Random Graphs
Lecture IV: May 24

1 Random Graphs \(G(n, p) \)

Started in 1960 with "The Evolution of the Random Graph" by Paul Erdős and Alfred Rényi. \(n \) vertices, each pair adjacent with independent probability \(p \). Critically, we generally have \(p \) as a function of \(n \).

1.1 Property A: \(\exists K_4 \)

For \(|s| = 4 \) let \(A_s := S \) is a \(K_4 \). Let \(X_s := \) indicator r.v. for \(A_s \) with values \(\{0,1\} \).

\[
X = \sum_{|s|=4} X_s
\]

\[
E[X_s] = Pr[A_s] = p^6 \Rightarrow E[X] = \left(\frac{n}{4}\right) p^6 \sim \frac{n^4 p^6}{24}
\]

We are lead to consider \(p \approx o(n^{-\frac{2}{3}}) \)

Theorem 1.1

(a) If \(p(n) = o(n^{-\frac{2}{3}}) \) then \(\lim_{n\to\infty} Pr[A] = 0 \)

(b) If \(p(n) \gg n^{-\frac{2}{3}} \) then \(\lim_{n\to\infty} Pr[A] = 1 \)

We say that \(p_0(n) \) is a threshold function for event \(A \), if:

(i) \(p \ll p_0(n) \Rightarrow Pr[A] \to 0 \)

(ii) \(p \gg p_0(n) \Rightarrow Pr[A] \to 1 \)

Remark: If \(p_0(n) \) is a threshold function then \(c p_0(n) \) is a threshold function as well.

1.2 Example:

Planarity has \(\frac{\log n}{n} = p_0(n) \). "Sharp threshold" = \(\frac{(1+\epsilon)\log n}{n} \) is not planar, but \(\frac{(1-\epsilon)\log n}{n} \) is planar.
1.3 FACT:
If $E[X] \to 0$ then $Pr[X = 0] \to 1$. X is a counting r.v. (i.e. 0,1,2,3,...)
Proof:
(i) $p \ll n^{-\frac{2}{3}} \Rightarrow E[X] \to 0 \Rightarrow Pr[A] \to 0$
(ii) $p \gg n^{-\frac{2}{3}} \Rightarrow E[X] \to \infty \not\Rightarrow Pr[X \neq 0] \to 1$
End of Proof

2 Example
Consider a K_4 with an extra vertex joined to one of the four vertices. So it has 5 vertices and 7 edges. What is the threshold for its appearance. Let X be the number of these “fish”. $E[X] = \Theta(n^5 p^7)$. If $p \gg n^{-\frac{2}{3}}$ then we don’t have $Pr[B] \to 1$. If $n^{-\frac{2}{3}} \ll p \ll n^{-\frac{2}{3}}$ we only have “fish” without the tail, as we don’t have the K_4 with probability 1.

2.1 FACT:
If $E[X] \to \infty$ and $Var[X] = o(E[X]^2)$ then:
(i) $Pr[X = 0] \to 0$
(ii) $X \sim E[X]$ (asymptotic, almost surely)
Proof: Recall Chebychev: $Pr[|X - \mu| \geq \lambda \sigma] \leq \lambda^2$
(i) $Pr[X = 0] \leq Pr[|X - \mu| \geq (\frac{\mu}{\sigma}) \sigma] \leq \frac{\sigma^2}{\mu^2}$
but $\frac{\sigma^2}{\mu^2} \to 0$ so $Pr[X = 0] \to 0$.
(ii) $Pr[|X - \mu| \geq \epsilon \mu] \leq \frac{\sigma^2}{\epsilon^2 \mu^2}$
for fixed ϵ we get that $Pr[|X - \mu| \geq \epsilon \mu] \to 0$. So $E[X]$ is close to X. End of Proof. Let
$$X = \sum X_S$$
and
$$Var[X] = \sum Var[X_S] + \sum_{S \neq T} Cov[X_S, X_T] \leq E[X] + \Delta$$
where
$$\Delta := \sum Pr[A_S \cap A_T]$$
and the sum is over $S \sim T$ but $S \neq T$. Suppose we have a relation \sim on an index set such that $\neg(S \sim T) \Rightarrow A_S, A_T$ independent. In our case: $S \sim T := |S \cap T| \geq 2.$
If $E[X] \to \infty$ and $\Delta = o(E[X]^2)$ then $X > 0$ almost surely.
In our case:

\[\Delta = \sum \Pr[A_S \land A_T] = \sum_{i=2}^{3} \sum_{|S \cap T|=i} \Pr[A_S \land A_T] \]

For \(i = 2 \)

\[O(n^6p^{11}) = O\left(\frac{(n^4p^6)^2}{n^2p}\right) = O(E[X]^2) \]

For \(i = 3 \)

\[O(n^5p^9) = O\left(\frac{(n^4p^6)^2}{n^3p^3}\right) = O(E[X]^2) \]

Definition: Let \(H \) have \(v \) vertices and \(e \) edges. We call \(H \) strictly balanced if every subgraph \(H' \) with \(v' \) vertices, \(e' \) edges is such that \(\frac{e'}{v'} < \frac{e}{v} \). It is balanced when \(\frac{e'}{v'} \leq \frac{e}{v} \).

The “fish” is not balanced, because \(\frac{6}{4} > \frac{7}{5} \).

Theorem 2.1 Let \(H \) be balanced. Then \(p = n^{-\frac{\xi}{2}} \) is a threshold function for \(A := \exists H \) (this is actually an iff statement)

Proof: For each \(|S| = v \) let \(A_S := S \) contains \(H \) and \(X_S := \) indicator r.v. of \(A_S \). Then

\[E[X_S] = \Theta(p^v) \Rightarrow E[X] = \Theta(n^v p^v) \]

\[\Delta = \sum_{i=2}^{v-1} \sum_{|S \cap T|=i} \Pr[A_S \land A_T] \]

We need for each \(i \) that \(\sum_i = o(\mu^2) \).

Given \(i \) the number of \((S, T) = O(n^{2v-i}) \) and \(\Pr[A_S \land A_T] = O(p^{2v-i}) \) where \(e_i \) is the maximum number of edges of \(H \) in \(i \) points.

Since \(H \) is balanced \(\frac{e}{v} \leq \frac{e_i}{v_i} \). So given \(i \):

\[\sum = O(n^{2v-i}p^{2v-e_i}) = O\left(\frac{(n^vp^v)^2}{n^ip^{e_i}}\right) = o(1) \]

End of Proof.

2.2 Example:

The number of Hamiltonian cycles: \(\frac{n!}{2^n} \) with probability \(p^n \) so the expected number is \(\frac{n!p^n}{2^n} \) which reaches 1 at around \(p = \frac{e}{n} \) but this is not the threshold function as at that point there are lots of isolated vertices. The actual threshold function is \(\frac{\ln n}{n} \) which took many years to show.

2.3 Special Case:

Suppose the events \(A_S \) are symmetric. Then

\[\Delta = \sum \Pr[A_S \land A_T] = \sum_{S} \sum \Pr[A_S] \Pr[A_T|A_S] = E[X]\Delta^* \]

where

\[\Delta^* = \sum \Pr[A_T|A_S] \]

for any given \(S \).
2.4 Claim:

$$\Delta = o(E[X]^2) \leftrightarrow \Delta^* = o(E[X])$$

3 Connectivity

Perhaps the most famous of the Erdős-Rényi results.

Theorem: If

$$p = \frac{\ln n}{n} + \frac{c}{n}$$

then $G(n, p)$ is connected with limiting probability $e^{-e^{-c}}$.

Why? What stops G from being connected in this range is isolated points. Let WEIRD be the event that G has no isolated points but is not connected. We claim WEIRD (for p in this range) has limiting probability zero. Its probability is at most the sum over $2 \leq k \leq n/2$ of the probability of having a k point component. For fixed k we say there are $\Theta(n^k)$ possible components, probability $O(n^{1-k})$ that those k points are connected and probability $(1-p)^{k(n-k)} = \Theta(n^{-k})$ that there are no edges crossing the border so this is $o(1)$. Larger k (and summing over k) is moderately technically challenging and we’ll skip it.

Let X_v be the indicator for v being isolated and $Z = \sum X_v$ the number of isolated points. So $E[X_v] = (1-p)^n \sim e^{-c}n^{-1}$ and $E[Z] \sim e^{-c}$. Set $\mu := E[Z]$. What we want is that Z is asymptotically Poisson, in particular that $\Pr[Z = 0] \sim e^{-\mu}$. For this it suffices that each fixed r-th factorial moment $E[(\sum X_v)^r] \sim \frac{\mu^r}{r!}$ where This is like inclusion-exclusion. We have

$$\sum E[X_{v_1} \cdots X_{v_r}] = \binom{n}{r} E[X_1 \cdots X_r]$$

The probability that a given r points are connected is $(1-p)^r(n-1)(1-p)^{-\binom{r}{2}}$ but since r is fixed this is asymptotic to the result if they were independent and so $E[(\sum X_v)^r]$ is asymptotically what we want.

Or: Let A_v be the indicator of v being isolated and we want the probability that no A_v holds. By Inclusion-Exclusion it is $1 - S_1 + S_2 - S_3 + \ldots$ where S_r is the sum over r-sets of r points being isolated. So $S_r \to \frac{n^r}{r!}$.

To interchange the limits we use the *Bonferroni Inequalities* which say that Inclusion-Exclusion alternately over- and under- estimates the final answer. For any fixed r we can bound between the sum up to r and the sum up to $r+1$ and with r fixed we interchange the limits. Then the sum gets more and more sandwiched as we let $r \to \infty$.
