Counting independent sets in hypergraphs and its applications

József Balogh
U. of Illinois at U.C.

2015
Ralph Faudree (1939 – 2015)
Ralph Faudree (1939 – 2015)

- 50 joint papers with Erdős.
Erdős, Faudree and Sós conjectured that every c-Ramsey graph with n vertices contains $\Omega(n^5/2)$ induced subgraphs, any two of which differ either in the number of vertices or in the number of edges, i.e., the number of distinct pairs $(|V(H)|, |E(H)|)$, as H ranges over all induced subgraphs of G, is $\Omega(n^5/2)$.

Erdős, Faudree and Sós conjectured that every c-Ramsey graph with n vertices contains $\Omega(n^{5/2})$ induced subgraphs, any two of which differ either in the number of vertices or in the number of edges, i.e., the number of distinct pairs $(|V(H)|, |E(H)|)$, as H ranges over all induced subgraphs of G, is $\Omega(n^{5/2})$.
Erdős, Faudree and Sós conjectured that every c-Ramsey graph with n vertices contains $\Omega(n^{5/2})$ induced subgraphs, any two of which differ either in the number of vertices or in the number of edges, i.e., the number of distinct pairs $(|V(H)|, |E(H)|)$, as H ranges over all induced subgraphs of G, is $\Omega(n^{5/2})$.

Laci Székely 60!
Plenary Speaker:
Plenary Speaker:

József Balogh:

Extremal results for random discrete structures
Plenary Speaker:

József Balogh:

Extremal results for random discrete structures

Will talk about recent results and current standing of things!
Balogh–Morris–Samotij, Saxton–Thomason [2015]

Certain hypergraphs have only few independent sets.
Authors I. [at the time of the submission of the paper]

W. Samotij

R. Morris
Authors II. [at the time of the submission of the paper]
Authors I. [at the time of the acceptance of the paper]
Authors II. [at the time of the acceptance of the paper]

Recent Results:
Wildcats -- Red Alliance 3 -- 2 (1-1) [Goals: Samu 2, Aiden]

Current Standing:
1. Wildcats 11 1 - 42 - 9 34 [already champion!]
Counting Independent sets in Hypergraphs

Balogh–Morris–Samotij, Saxton–Thomason [2015]

Certain hypergraphs have only few independent sets.
Counting Independent sets in Hypergraphs

Balogh–Morris–Samotij, Saxton–Thomason [2015]

Certain hypergraphs have only few independent sets.

Example (Turán problem)

- \(V = \) edges of \(K_n \),
Counting Independent sets in Hypergraphs

Balogh–Morris–Samotij, Saxton–Thomason [2015]

Certain hypergraphs have only few independent sets.

Example (Turán problem)

- $V = \text{edges of } K_n$,
- $\mathcal{H} = \text{edge-sets of copies of } K_k \text{ in } K_n$.
Counting Independent sets in Hypergraphs

Balogh–Morris–Samotij, Saxton–Thomason [2015]

Certain hypergraphs have only few independent sets.

Example (Turán problem)

- $V =$ edges of K_n,
- $\mathcal{H} =$ edge-sets of copies of K_k in K_n.
- Independent sets in $\mathcal{H} \quad < - - - - - - > \quad K_k$-free graphs on $[n]$.
Counting Independent sets in Hypergraphs

Balogh–Morris–Samotij, Saxton–Thomason [2015]

Certain hypergraphs have only few independent sets.

Example (Turán problem)

- $V =$ edges of K_n.
- $\mathcal{H} =$ edge-sets of copies of K_k in K_n.
- Independent sets in $\mathcal{H} < \quad \quad \quad \quad \quad \quad >$ K_k-free graphs on $[n]$.
- There are only few K_k-free graphs on $[n]$.
The number of triangle-free graphs:
Regularity Lemma approach

Theorem (Erdős–Kleitman–Rothschild [1976])

The number of triangle-free graphs is $2^{n^2/4+o(n^2)}$.
The number of triangle-free graphs:
Regularity Lemma approach

Theorem (Erdős–Kleitman–Rothschild [1976])

The number of triangle-free graphs is $2^{n^2/4+o(n^2)}$.

- Apply Szemerédi Regularity Lemma for a G_n triangle-free graph.
The number of triangle-free graphs:
Regularity Lemma approach

<table>
<thead>
<tr>
<th>Theorem (Erdős–Kleitman–Rothschild [1976])</th>
</tr>
</thead>
<tbody>
<tr>
<td>The number of triangle-free graphs is $2^{n^2/4+o(n^2)}$.</td>
</tr>
</tbody>
</table>

- Apply Szemerédi Regularity Lemma for a G_n triangle-free graph.
- Obtain cluster graph R_t. [corresponds to a t-partition of $V(G)$].
The number of triangle-free graphs:

Regularity Lemma approach

Theorem (Erdős–Kleitman–Rothschild [1976])

The number of triangle-free graphs is $2^{n^2/4+o(n^2)}$.

- Apply Szemerédi Regularity Lemma for a G_n triangle-free graph.
- Obtain cluster graph R_t. [corresponds to a t-partition of $V(G)$].
- Clean G_n: remove edges inside clusters, between sparse pairs, and irregular pairs.
The number of triangle-free graphs:
Regularity Lemma approach

Theorem (Erdős–Kleitman–Rothschild [1976])

The number of triangle-free graphs is $2^{n^2/4+o(n^2)}$.

- Apply Szemerédi Regularity Lemma for a G_n triangle-free graph.
- Obtain cluster graph R_t. [corresponds to a t-partition of $V(G)$].
- Clean G_n: remove edges inside clusters, between sparse pairs, and irregular pairs.
- $C_n :=$ blow up R_t to n vertices.
The number of triangle-free graphs:
Regularity Lemma approach

Theorem (Erdős–Kleitman–Rothschild [1976])

The number of triangle-free graphs is $2^{n^2/4+o(n^2)}$.

- Apply Szemerédi Regularity Lemma for a G_n triangle-free graph.
- Obtain cluster graph R_t. [corresponds to a t-partition of $V(G)$].
- Clean G_n: remove edges inside clusters, between sparse pairs, and irregular pairs.
- $C_n :=$ blow up R_t to n vertices.
- C_n contains all but $o(n^2)$ edges of G_n. [Approximate Container]
The number of triangle-free graphs:

Regularity Lemma approach

Theorem (Erdős–Kleitman–Rothschild [1976])

The number of triangle-free graphs is $2^{n^2/4+o(n^2)}$.

- Apply Szemerédi Regularity Lemma for a G_n triangle-free graph.
- Obtain cluster graph R_t. [corresponds to a t-partition of $V(G)$].
- Clean G_n: remove edges inside clusters, between sparse pairs, and irregular pairs.
- $C_n :=$ blow up R_t to n vertices.
- C_n contains all but $o(n^2)$ edges of G_n. [Approximate Container]
- C_n is triangle-free, hence $e(C_n) \leq n^2/4$.
The number of triangle-free graphs:

Regularity Lemma approach

Theorem (Erdős–Kleitman–Rothschild [1976])

The number of triangle-free graphs is \(2^{n^2/4+o(n^2)}\).

- Apply Szemerédi Regularity Lemma for a \(G_n\) triangle-free graph.
- Obtain cluster graph \(R_t\). [corresponds to a \(t\)-partition of \(V(G)\)].
- Clean \(G_n\): remove edges inside clusters, between sparse pairs, and irregular pairs.
- \(C_n := \text{blow up } R_t \text{ to } n \text{ vertices.}\)
- \(C_n\) contains all but \(o(n^2)\) edges of \(G_n\). [Approximate Container]
- \(C_n\) is triangle-free, hence \(e(C_n) \leq n^2/4.\)
- Number of choices for \(C_n\) is \(O(1) \cdot n^n.\)
The number of triangle-free graphs:
Regularity Lemma approach

Theorem (Erdős–Kleitman–Rothschild [1976])

The number of triangle-free graphs is $2^{n^2/4+o(n^2)}$.

- Apply Szemerédi Regularity Lemma for a G_n triangle-free graph.
- Obtain cluster graph R_t. [corresponds to a t-partition of $V(G)$].
- Clean G_n: remove edges inside clusters, between sparse pairs, and irregular pairs.
- $C_n :=$ blow up R_t to n vertices.
- C_n contains all but $o(n^2)$ edges of G_n. [**Approximate Container**]
- C_n is triangle-free, hence $e(C_n) \leq n^2/4$.
- Number of choices for C_n is $O(1) \cdot n^n$.
- Number of choices for G_n is

$$O(1) \cdot n^n.$$
The number of triangle-free graphs:
Regularity Lemma approach

Theorem (Erdős–Kleitman–Rothschild [1976])

The number of triangle-free graphs is \(2^{n^2/4+o(n^2)}\).

- Apply Szemerédi Regularity Lemma for a \(G_n\) triangle-free graph.
- Obtain cluster graph \(R_t\). [corresponds to a \(t\)-partition of \(V(G)\)].
- Clean \(G_n\): remove edges inside clusters, between sparse pairs, and irregular pairs.
- \(C_n := \text{blow up } R_t \text{ to } n \text{ vertices.}\)
- \(C_n\) contains all but \(o(n^2)\) edges of \(G_n\). [**Approximate Container**]
- \(C_n\) is triangle-free, hence \(e(C_n) \leq n^2/4\).
- Number of choices for \(C_n\) is \(O(1) \cdot n^n\).
- Number of choices for \(G_n\) is \(O(1) \cdot n^n \cdot 2^{n^2/4}\).
The number of triangle-free graphs:
Regularity Lemma approach

Theorem (Erdős–Kleitman–Rothschild [1976])

The number of triangle-free graphs is $2^{n^2/4+o(n^2)}$.

- Apply Szemerédi Regularity Lemma for a G_n triangle-free graph.
- Obtain cluster graph R_t. [corresponds to a t-partition of $V(G)$].
- Clean G_n: remove edges inside clusters, between sparse pairs, and irregular pairs.
- $C_n :=$ blow up R_t to n vertices.
- C_n contains all but $o(n^2)$ edges of G_n. [Approximate Container]
- C_n is triangle-free, hence $e(C_n) \leq n^2/4$.
- Number of choices for C_n is $O(1) \cdot n^n$.
- Number of choices for G_n is

$$O(1) \cdot n^n \cdot 2^{n^2/4} \cdot \binom{n^2}{o(n^2)} = 2^{n^2/4+o(n^2)}.$$
The number of triangle-free graphs: ‘New approach’

Theorem (Erdős–Kleitman–Rothschild [1976])

The number of triangle-free graphs is $2^{n^2/4+o(n^2)}$.
The number of triangle-free graphs: ‘New approach’

Theorem (Erdős–Kleitman–Rothschild [1976])

The number of triangle-free graphs is $2^{n^2/4 + o(n^2)}$.

Balogh–Morris–Samotij, Saxton–Thomason [2015]

There is a $t < 2^{O(\log n \cdot n^{3/2})}$ and a set $\{G_1, \ldots, G_t\}$ of graphs, each containing at most $o(n^3)$ triangles, such that for every triangle-free graph H there is an $i \in [t]$ such that $H \subseteq G_i$.
The number of triangle-free graphs: ‘New approach’

Theorem (Erdős–Kleitman–Rothschild [1976])

The number of triangle-free graphs is $2^{n^2/4+o(n^2)}$.

Balogh–Morris–Samotij, Saxton–Thomason [2015]

There is a $t < 2^{O(\log n \cdot n^{3/2})}$ and a set $\{G_1, \ldots, G_t\}$ of graphs, each containing at most $o(n^3)$ triangles, such that for every triangle-free graph H there is an $i \in [t]$ such that $H \subseteq G_i$.

- For each F_n triangle-free graph there is an i that $F_n \subset G_i$.
The number of triangle-free graphs: ‘New approach’

Theorem (Erdős–Kleitman–Rothschild [1976])

The number of triangle-free graphs is $2^{n^2/4 + o(n^2)}$.

Balogh–Morris–Samotij, Saxton–Thomason [2015]

There is a $t < 2^{O(\log n \cdot n^{3/2})}$ and a set $\{G_1, \ldots, G_t\}$ of graphs, each containing at most $o(n^3)$ triangles, such that for every triangle-free graph H there is an $i \in [t]$ such that $H \subseteq G_i$.

- For each F_n triangle-free graph there is an i that $F_n \subset G_i$.
- $e(G_i) \leq n^2/4 + o(n^2)$.
The number of triangle-free graphs: ‘New approach’

Theorem (Erdős–Kleitman–Rothschild [1976])

The number of triangle-free graphs is $2^{n^2/4 + o(n^2)}$.

Balogh–Morris–Samotij, Saxton–Thomason [2015]

There is a $t < 2^{O(\log n \cdot n^{3/2})}$ and a set $\{G_1, \ldots, G_t\}$ of graphs, each containing at most $o(n^3)$ triangles, such that for every triangle-free graph H there is an $i \in [t]$ such that $H \subseteq G_i$.

- For each F_n triangle-free graph there is an i that $F_n \subseteq G_i$.
- $e(G_i) \leq n^2/4 + o(n^2)$.
- Number of choices for F_n is
The number of triangle-free graphs: ‘New approach’

Theorem (Erdős–Kleitman–Rothschild [1976])

The number of triangle-free graphs is \(2^{n^2/4 + o(n^2)}\).

Balogh–Morris–Samotij, Saxton–Thomason [2015]

There is a \(t < 2^{O(\log n \cdot n^{3/2})}\) and a set \(\{G_1, \ldots, G_t\}\) of graphs, each containing at most \(o(n^3)\) triangles, such that for every triangle-free graph \(H\) there is an \(i \in [t]\) such that \(H \subseteq G_i\).

- For each \(F_n\) triangle-free graph there is an \(i\) that \(F_n \subseteq G_i\).
- \(e(G_i) \leq n^2/4 + o(n^2)\).
- Number of choices for \(F_n\) is \(t\).
The number of triangle-free graphs: ‘New approach’

Theorem (Erdős–Kleitman–Rothschild [1976])

The number of triangle-free graphs is $2^{n^2/4 + o(n^2)}$.

Balogh–Morris–Samotij, Saxton–Thomason [2015]

There is a $t < 2^{O(\log n \cdot n^{3/2})}$ and a set $\{G_1, \ldots, G_t\}$ of graphs, each containing at most $o(n^3)$ triangles, such that for every triangle-free graph H there is an $i \in [t]$ such that $H \subseteq G_i$.

- For each F_n triangle-free graph there is an i that $F_n \subset G_i$.
- $e(G_i) \leq n^2/4 + o(n^2)$.
- Number of choices for F_n is $t \cdot 2^{n^2/4 + o(n^2)} = 2^{n^2/4 + o(n^2)}$.
Szemerédi Container Lemma's

Szemerédi container lemma

There is a $t = 2^{o(n^2)}$ and a set $\{G_1, \ldots, G_t\}$ of graphs, each containing at most $o(n^3)$ triangles, such that for every triangle-free graph H there is $i \in [t]$ such that $H \subseteq G_i$.
Szemerédi Container Lemma’s

Szemerédi container lemma

There is a $t = 2^{o(n^2)}$ and a set $\{G_1, \ldots, G_t\}$ of graphs, each containing at most $o(n^3)$ triangles, such that for every triangle-free graph H there is $i \in [t]$ such that $H \subseteq G_i$.

Szemerédi Approximate container lemma

There is a $t = O(1)$ and a set $\{G_1, \ldots, G_t\}$ of graphs, each triangle-free, such that for every triangle-free graph H there is a permutation of the vertex set, that there is an $i \in [t]$ such that $|E(H) - E(G_i)| = o(n^2)$.
Let $f : E(K_n) \to [0, 2]$ be uniform, random function, independent for each edge.

Random points in the metric polytope

The polytope contains the cube $[1, 2]^{(n^2)}$.

What is the volume of this polytope? $1 \leq \ldots \leq 2(n^2)$.

It is $(1 + o(1))(n^2)$ with the Regularity Lemma.

It is between $n^{3/2}$ and $n^{9/5} + o(1)$ with the entropy upper bound.
Metric Spaces

Kozma, Meyerovitch, Peled and Samotij [2013+++]:
Random points in the metric polytope

- Let $f : E(K_n) \to [0, 2]$ be uniform, random function, independent for each edge.
- f is metric if every triangle satisfies the triangle inequality:

$$\forall u, v, w \in V(K_n) : \quad f(uv) + f(uw) \geq f(vw).$$

- Metric functions form a polytope in \mathbb{R}^{n^2}.
- This polytope contains the cube $[1, 2]^{n^2}$.
- What is the volume of this polytope? $1 \leq \cdots \leq 2(n^2)$.
- It is $(1 + o(1))n^2$ [Using Regularity Lemma!].
- It is between $n^{3/2}$ and $n^{9/5} + o(1)$ [Upper bound using entropy].
Kozma, Meyerovitch, Peled and Samotij [2013+++]:

Random points in the metric polytope

- Let $f : E(K_n) \to [0, 2]$ be uniform, random function, independent for each edge.
- f is metric if every triangle satisfies the triangle inequality:
 \[
 \forall u, v, w \in V(K_n) : \quad f(uv) + f(uw) \geq f(vw).
 \]
- Metric functions form a polytope in $\mathcal{R}(\binom{n}{2})$.
Kozma, Meyerovitch, Peled and Samotij [2013+++]:
Random points in the metric polytope

- Let \(f : E(K_n) \to [0, 2] \) be uniform, random function, independent for each edge.
- \(f \) is metric if every triangle satisfies the triangle inequality:
 \[
 \forall u, v, w \in V(K_n) : \quad f(uv) + f(uw) \geq f(vw).
 \]

- Metric functions form a polytope in \(\mathcal{R}^{\binom{n}{2}} \).
- This polytope contains the cube \([1, 2]^{\binom{n}{2}} \).
Kozma, Meyerovitch, Peled and Samotij [2013+++]:
Random points in the metric polytope

- Let $f : E(K_n) \to [0, 2]$ be uniform, random function, independent for each edge.
- f is metric if every triangle satisfies the triangle inequality:
 \[
 \forall u, v, w \in V(K_n) : \quad f(uv) + f(uw) \geq f(vw).
 \]

- Metric functions form a polytope in $\mathcal{R}^{\binom{n}{2}}$.
- This polytope contains the cube $[1, 2]^{\binom{n}{2}}$.
- What is the volume of this polytope? $[1 \leq \ldots \leq 2^{\binom{n}{2}}]$.

Using Regularity Lemma!

Upper bound using entropy.
Let $f : E(K_n) \to [0, 2]$ be uniform, random function, independent for each edge.

f is metric if every triangle satisfies the triangle inequality:

$$\forall u, v, w \in V(K_n) : \quad f(uv) + f(uw) \geq f(vw).$$

Metric functions form a polytope in $\mathcal{R}^{\binom{n}{2}}$.

This polytope contains the cube $[1, 2]^{\binom{n}{2}}$.

What is the volume of this polytope? $1 \leq \ldots \leq 2^{\binom{n}{2}}$.

It is $(1 + o(1))^{\binom{n}{2}}$ [Using Regularity Lemma!].
Let $f : E(K_n) \to [0, 2]$ be uniform, random function, independent for each edge.

f is metric if every triangle satisfies the triangle inequality:

$$\forall u, v, w \in V(K_n) : \quad f(uv) + f(uw) \geq f(vw).$$

Metric functions form a polytope in $\mathcal{R}^{n \choose 2}$.

This polytope contains the cube $[1, 2]^{n \choose 2}$.

What is the volume of this polytope? $[1 \leq \ldots \leq 2^{n \choose 2}]$.

It is $(1 + o(1))^{n \choose 2}$ [Using Regularity Lemma!].

It is between $n^{3/2}$ and $n^{9/5 + o(1)}$ [Upper bound using entropy].
Discretize the problem: $f : E(K_n) \to [2r]$.

Consider functions as 2^r-edge-colored K_n.

Apply 'Colored Regularity Lemma'.

Cluster graph edges maybe multicolored!

Cluster graph is 'metric'.

Product of multiplicities of each triangle is $\leq (r+1)^3$.

Number of metric edge-colorings is at most $(r+1)(n^2) + o(n^2)$.

Mubayi, Terry (2015+): Almost every metric function is $f : E(K_n) \to [r, \ldots, 2r]$.
Kozma, Meyerovitch, Peled and Samotij: Regularity Lemma Approach

- Discretize the problem: \(f : E(K_n) \rightarrow [2r] \).
- Count metric functions!
Discretize the problem: \(f : E(K_n) \rightarrow [2r] \).

Count metric functions!

Consider functions as \(2r \)-edge-colored \(K_n \).
Discretize the problem: \(f : E(K_n) \rightarrow [2r] \).

Count metric functions!

Consider functions as \(2r \)-edge-colored \(K_n \).

Apply ‘Colored Regularity Lemma’.
Discretize the problem: $f : E(K_n) \rightarrow [2r]$.
Count metric functions!
Consider functions as $2r$-edge-colored K_n.
Apply ‘Colored Regularity Lemma’.
Cluster graph edges maybe multicolored!
<table>
<thead>
<tr>
<th>Kozma, Meyerovitch, Peled and Samotij: Regularity Lemma Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Discretize the problem: (f : E(K_n) \rightarrow [2r]).</td>
</tr>
<tr>
<td>2. Count metric functions!</td>
</tr>
<tr>
<td>3. Consider functions as (2r)-edge-colored (K_n).</td>
</tr>
<tr>
<td>4. Apply ‘Colored Regularity Lemma’.</td>
</tr>
<tr>
<td>5. Cluster graph edges maybe multicolored!</td>
</tr>
<tr>
<td>6. Cluster graph is ‘metric’.</td>
</tr>
</tbody>
</table>
Discretize the problem: $f : E(K_n) \to [2r]$.

Count metric functions!

Consider functions as $2r$-edge-colored K_n.

Apply ‘Colored Regularity Lemma’.

Cluster graph edges maybe multicolored!

Cluster graph is ‘metric’.

Product of multiplicities of each triangle is $\leq (r + 1)^3$.

Mubayi, Terry (2015+) Almost every metric function is $f : E(K_n) \to [r, \ldots, 2r]$.
Kozma, Meyerovitch, Peled and Samotij: Regularity Lemma Approach

- Discretize the problem: \(f : E(K_n) \rightarrow [2r] \).
- Count metric functions!
- Consider functions as \(2r \)-edge-colored \(K_n \).
- Apply ‘Colored Regularity Lemma’.
- Cluster graph edges maybe multicolored!
- Cluster graph is ‘metric’.
- Product of multiplicities of each triangle is \(\leq (r + 1)^3 \).
- Number of metric edge-colorings is at most \((r + 1)\binom{n}{2} + o(n^2) \).
Discretize the problem: $f : E(K_n) \rightarrow [2r]$.

Count metric functions!

Consider functions as $2r$-edge-colored K_n.

Apply ‘Colored Regularity Lemma’.

Cluster graph edges maybe multicolored!

Cluster graph is ‘metric’.

Product of multiplicities of each triangle is $\leq (r + 1)^3$.

Number of metric edge-colorings is at most $(r + 1)^{n\choose 2} + o(n^2)$.

$f : E(K_n) \rightarrow [r, \ldots, 2r]$ is metric, bound ‘sharp’.
Discretize the problem: \(f : E(K_n) \rightarrow [2r] \).

Count metric functions!

Consider functions as 2r-edge-colored \(K_n \).

Apply ‘Colored Regularity Lemma’.

Cluster graph edges maybe multicolored!

Cluster graph is ‘metric’.

Product of multiplicities of each triangle is \(\leq (r + 1)^3 \).

Number of metric edge-colorings is at most \((r + 1)\binom{n}{2} + o(n^2) \).

\(f : E(K_n) \rightarrow [r, \ldots, 2r] \) is metric, bound ‘sharp’.

Almost every metric function is \(f : E(K_n) \rightarrow [r, \ldots, 2r] \).
Balogh, Wagner [2015+]: Container Lemma Approach

\[V(\mathcal{H}) := E(K_n) \times [2r]. \]
Balogh, Wagner [2015+]: Container Lemma Approach

- $V(\mathcal{H}) := E(K_n) \times [2r]$.
- $E(\mathcal{H}) := \{(uv, i), (vw, j), (uw, \ell) \mid (i, j, \ell) \text{ is a non-metric triple}\}$.
Balogh, Wagner [2015+]: Container Lemma Approach

- \(V(\mathcal{H}) := E(K_n) \times [2r] \).
- \(E(\mathcal{H}) := \{[(uv, i), (vw, j), (uw, \ell)] : (i, j, \ell) \text{ is a non-metric triple}\} \).
- Independent transversal sets are metric colorings!!
Balogh, Wagner [2015+]: Container Lemma Approach

- \(V(\mathcal{H}) := E(K_n) \times [2r] \).
- \(E(\mathcal{H}) := \{[(uv, i), (vw, j), (uw, \ell)] : (i, j, \ell) \text{ is a non-metric triple}\} \).
- Independent transversal sets are metric colorings!!
- Large independent set:
 \[G \times [2r], \text{ where } G \text{ is triangle-free! (no coloring!)} \]
Balogh, Wagner [2015+]: Container Lemma Approach

- \(V(\mathcal{H}) := E(K_n) \times [2r] \).
- \(E(\mathcal{H}) := \{(uv, i), (vw, j), (uw, \ell) : (i, j, \ell) \text{ is a non-metric triple}\} \).
- Independent transversal sets are metric colorings!!
- Large independent set:
 \[G \times [2r], \text{ where } G \text{ is triangle-free! (no coloring!)} \]
- Metric independent set: \(E(K_n) \times [r + 1, \ldots, 2r] \).
Balogh, Wagner [2015+]: Container Lemma Approach

- \(V(\mathcal{H}) := E(K_n) \times [2r] \).
- \(E(\mathcal{H}) := \{[(uv, i), (vw, j), (uw, \ell)] : (i, j, \ell) \text{ is a non-metric triple}\} \).
- Independent transversal sets are metric colorings!!
- Large independent set:
 \[G \times [2r], \text{ where } G \text{ is triangle-free! (no coloring!)} \]
- Metric independent set: \(E(K_n) \times [r + 1, \ldots, 2r] \).
- Supersaturation:

 \[
 \text{if } S \subset V(\mathcal{H}), |S| > (1 + c)(r + 1)\binom{n}{2} \text{ then } e(\mathcal{H}[S]) > 0.1c\binom{n}{3}.
 \]
Balogh, Wagner [2015+]: Container Lemma Approach

- $V(\mathcal{H}) := E(K_n) \times [2r]$.
- $E(\mathcal{H}) := \{[(uv, i), (vw, j), (uw, \ell)] : (i, j, \ell) \text{ is a non-metric triple}\}$.
- Independent transversal sets are metric colorings!!
- Large independent set:
 \[G \times [2r], \text{ where } G \text{ is triangle-free! (no coloring!)} \]
- Metric independent set: $E(K_n) \times [r + 1, \ldots, 2r]$.
- Supersaturation:
 \[\text{if } S \subset V(\mathcal{H}), |S| > (1 + c)(r + 1)\binom{n}{2} \text{ then } e(\mathcal{H}[S]) > 0.1c\binom{n}{3}. \]

Balogh, Wagner [2015+]: Container Lemma Approach

Number of metric edge-colorings is $(r + 1)\binom{n}{2} + o(n^2)$, when $r \leq n^{1/3-o(1)}$.

Balogh, Wagner [2015+]: Container Lemma Approach

The volume of the metric polytope is at most $n^{11/6+o(1)}$.
Balogh, Wagner [2015+]: Container Lemma Approach

The volume of the metric polytope is at most $n^{11/6+o(1)}$.

Kozma, Meyerovitch, Morris, Peled and Samotij: Container Approach

The volume of the metric polytope is between $n^{3/2}$ and $n^{3/2} \log^2 n$.
Extremal Graph Theory in random graphs:

Babai, Simonovits, Spencer [1990]

(i) For what p it is true that the largest triangle-free subgraph of $G(n, p)$ is bipartite?
Babai, Simonovits, Spencer [1990]

1. For what p is it true that the largest triangle-free subgraph of $G(n, p)$ is bipartite?
2. For what p is it true that the largest triangle-free subgraph of $G(n, p)$ has $(1 + o(1))pn^2/4$ edges?
Extremal Graph Theory in random graphs:

Babai, Simonovits, Spencer [1990]

(i) For what p it is true that the largest triangle-free subgraph of $G(n, p)$ is bipartite?

(ii) For what p it is true that the largest triangle-free subgraph of $G(n, p)$ has $(1 + o(1))pn^2/4$ edges?

(iii) For $p \in [0, 1]$ how many edges does a maximum C_4-free subgraph of $G(n, p)$ has?
Extremal Graph Theory in random graphs:

Babai, Simonovits, Spencer [1990]

(i) For what p it is true that the largest triangle-free subgraph of $G(n, p)$ is bipartite?

(ii) For what p it is true that the largest triangle-free subgraph of $G(n, p)$ has $(1 + o(1))pn^2/4$ edges?

(iii) For $p \in [0, 1]$ how many edges does a maximum C_4-free subgraph of $G(n, p)$ have?

Haxell, Kohayakawa, Luczak [1995]:
upto constant factor (iii) is settled even when $p = o(1)$.
Extremal Graph Theory in random graphs:

Babai, Simonovits, Spencer [1990]

(i) For what p it is true that the largest triangle-free subgraph of $G(n, p)$ is bipartite?

(ii) For what p it is true that the largest triangle-free subgraph of $G(n, p)$ has $(1 + o(1))pn^2/4$ edges?

(iii) For $p \in [0, 1]$ how many edges does a maximum C_4-free subgraph of $G(n, p)$ has?

Haxell, Kohayakawa, Luczak [1995]:
up to constant factor (iii) is settled even when $p = o(1)$.

Kleitman, Winston [1982]: Number of C_4-free graphs is $2^{O(n^{3/2})}$.
Extremal Graph Theory in random graphs:

Babai, Simonovits, Spencer [1990]

(i) For what p it is true that the largest triangle-free subgraph of $G(n, p)$ is bipartite?

(ii) For what p it is true that the largest triangle-free subgraph of $G(n, p)$ has $(1 + o(1))pn^2/4$ edges?

(iii) For $p \in [0, 1]$ how many edges does a maximum C_4-free subgraph of $G(n, p)$ has?

Haxell, Kohayakawa, Luczak [1995]:
upto constant factor (iii) is settled even when $p = o(1)$.

Kleitman, Winston [1982]: Number of C_4-free graphs is $2^{O(n^{3/2})}$.

Furedi [1992]: with $m = (1/2 - a)n^{3/2}$ edges is at most

$$\left(\frac{4n^3}{m^2}\right)^m.$$
Extremal Graph Theory in random graphs:

Babai, Simonovits, Spencer [1990]

(i) For what p it is true that the largest triangle-free subgraph of $G(n, p)$ is bipartite?

(ii) For what p it is true that the largest triangle-free subgraph of $G(n, p)$ has $(1 + o(1))pn^2/4$ edges?

(iii) For $p \in [0, 1]$ how many edges does a maximum C_4-free subgraph of $G(n, p)$ have?

Haxell, Kohayakawa, Luczak [1995]:
upto constant factor (iii) is settled even when $p = o(1)$.

Kleitman, Winston [1982]: Number of C_4-free graphs is $2^{O(n^{3/2})}$.

Furedi [1992]: with $m = (1/2 - a)n^{3/2}$ edges is at most

$$\left(\frac{4n^3}{m^2} \right)^m .$$

Expected number of C_4-free graphs in $G(n, p)$ with at least m edges is $o(1)$ for $p < 1/16$.
Extremal Graph Theory in random graphs:

Question (Erdős)

Assuming that H contains a cycle, the number of H-free graphs is

$$2^{(1+o(1))\text{ex}(n,H)}.$$
Extremal Graph Theory in random graphs:

Question (Erdős)

Assuming that H contains a cycle, the number of H-free graphs is

$$2^{(1+o(1))\text{ex}(n,H)}.$$

Erdős – Frankl – Rodl [1986]

Conjecture holds when H is not bipartite.
Extremal Graph Theory in random graphs:

Question (Erdős)

Assuming that H contains a cycle, the number of H-free graphs is

$$2^{(1+o(1))\text{ex}(n,H)}.$$

Erdős – Frankl – Rodl [1986]

Conjecture holds when H is not bipartite.

Morris – Saxton [2015]

Conjecture is false when $H = C_6$.!!!
Extremal Graph Theory in random graphs:

Question (Erdős)

Assuming that H contains a cycle, the number of H-free graphs is

$$2^{(1+o(1))\text{ex}(n,H)}.$$

Erdős – Frankl – Rodl [1986]

Conjecture holds when H is not bipartite.

Morris – Saxton [2015]

Conjecture is false when $H = C_6$.

- Fix an extremal graph on $n/2$ vertices.
Extremal Graph Theory in random graphs:

Question (Erdős)

Assuming that H contains a cycle, the number of H-free graphs is

$$2^{(1+o(1))\text{ex}(n,H)}.$$

Erdős – Frankl – Rodl [1986]

Conjecture holds when H is not bipartite.

Morris – Saxton [2015]

Conjecture is false when $H = C_6$!

- Fix an extremal graph on $n/2$ vertices.
- Replace each vertex with 2 vertices.
Extremal Graph Theory in random graphs:

Question (Erdős)

Assuming that H contains a cycle, the number of H-free graphs is

$$2^{(1+o(1))\text{ex}(n,H)}.$$

Erdős – Frankl – Rodl [1986]

Conjecture holds when H is not bipartite.

Morris – Saxton [2015]

Conjecture is false when $H = C_6$.

- Fix an extremal graph on $n/2$ vertices.
- Replace each vertex with 2 vertices.
- Replace each edge with a matching. Generate many C_6-free graphs:

$$7^{\text{ex}(n/2,C_6)} > 2^{\text{ex}(n,C_6)}.$$
C_4-free graphs in random graphs:

$p \cdot \text{ex}(n, C_4) \leq \text{ex}(G(n, p), C_4) \leq \text{ex}(n, C_4)$.
C_4-free graphs in random graphs:

$$p \cdot \text{ex}(n, C_4) \leq \text{ex}(G(n, p), C_4) \leq \text{ex}(n, C_4).$$

Balogh, Wagner [2015+]

For $p < 1/5$ there is a $c > 0$ that $(1 + c)p \cdot \text{ex}(n, C_4) \leq \text{ex}(G(n, p), C_4)$ w.h.p.
\[p \cdot \text{ex}(n, C_4) \leq \text{ex}(G(n, p), C_4) \leq \text{ex}(n, C_4). \]

Balogh, Wagner [2015+]

For \(p < 1/5 \) there is a \(c > 0 \) that \((1 + c)p \cdot \text{ex}(n, C_4) \leq \text{ex}(G(n, p), C_4)\) w.h.p..

Balogh, Wagner [2015+]

For every \(p \in (0, 1) \), there is a \(c > 0 \) that the largest \(C_4 \)-free subgraph of \(G(n, p) \) has at most \((1 - c) \cdot \text{ex}(n, C_4)\) edges w.h.p.
The number of C_4-free graphs is $2^{O(ex(n,C_4))} = 2^{O(n^{3/2})}$.
Kleitman–Winston [1982]

The number of C_4-free graphs is $2^{O(\text{ex}(n,C_4))} = 2^{O(n^{3/2})}$.

- For $i \in [n]$, let v_i be the min. degree vertex of
 $$H_i := G - \{v_1, \ldots, v_{i-1}\}.$$
The number of C_4-free graphs is $2^{O(\text{ex}(n,C_4))} = 2^{O(n^{3/2})}$.

- For $i \in [n]$, let v_i be the min. degree vertex of $H_i := G - \{v_1, \ldots, v_{i-1}\}$.
- $N(v_i)$ is P_3-free (path with two edges).
The Kleitman-Winston Method

Kleitman–Winston [1982]

The number of C_4-free graphs is $2^{O(\text{ex}(n,C_4))} = 2^{O(n^{3/2})}$.

- For $i \in [n]$, let v_i be the min. degree vertex of $H_i := G - \{v_1, \ldots, v_{i-1}\}$.
- $N(v_i)$ is P_3-free (path with two edges).
- $F_i := H_i^2$, $V(F_i) = V(H_i)$, $E(F_i) = \{uv : d_{H_i}(u, v) = 2\}$.

For a vertex ordering, degree sequence, a (small) container containing its neighborhood for each vertex.
The number of C_4-free graphs is $2^{O(\text{ex}(n,C_4))} = 2^{O(n^{3/2})}$.

For $i \in [n]$, let v_i be the min. degree vertex of

$H_i := G - \{v_1, \ldots, v_{i-1}\}$.

$N(v_i)$ is P_3-free (path with two edges).

$F_i := H_i^2$, $V(F_i) = V(H_i)$, $E(F_i) = \{uv : d_{H_i}(u, v) = 2\}$.

$N(v_i)$ is an independent set in F_i.
The number of C_4-free graphs is $2^{O(\text{ex}(n,C_4))} = 2^{O(n^{3/2})}$.

- For $i \in [n]$, let v_i be the min. degree vertex of $H_i := G - \{v_1, \ldots, v_{i-1}\}$.
- $N(v_i)$ is P_3-free (path with two edges).
- $F_i := H_i^2$, $V(F_i) = V(H_i)$, $E(F_i) = \{uv : d_{H_i}(u, v) = 2\}$.
- $N(v_i)$ is an independent set in F_i.
- Minimum degree of H_i implies: $\alpha(F_i) \leq n/d(v_i)$.

Kleitman–Winston [1982]
Kleitman–Winston [1982]

The number of C_4-free graphs is $2^{O(ex(n, C_4))} = 2^{O(n^{3/2})}$.

- For $i \in [n]$, let v_i be the min. degree vertex of $H_i := G - \{v_1, \ldots, v_{i-1}\}$.
- $N(v_i)$ is P_3-free (path with two edges).
- $F_i := H_i^2$, $V(F_i) = V(H_i)$, $E(F_i) = \{uv : d_{H_i}(u, v) = 2\}$.
- $N(v_i)$ is an independent set in F_i.
- Minimum degree of H_i implies: $\alpha(F_i) \leq n / d(v_i)$.
- Minimum degree + C_4-freeness of H_i:
 $|C| > (1 + 2c)n/d(v_i) \implies e(F_i[C]) > cn$.
The number of C_4-free graphs is $2^{O(\text{ex}(n,C_4))} = 2^{O(n^{3/2})}$.

- For $i \in [n]$, let v_i be the min. degree vertex of $H_i := G - \{v_1, \ldots, v_{i-1}\}$.
- $N(v_i)$ is P_3-free (path with two edges).
- $F_i := H_i^2$, $V(F_i) = V(H_i)$, $E(F_i) = \{uv : d_{H_i}(u, v) = 2\}$.
- $N(v_i)$ is an independent set in F_i.
- Minimum degree of H_i implies: $\alpha(F_i) \leq n/d(v_i)$.
- Minimum degree + C_4-freeness of H_i:
 \[|C| > (1 + 2c)n/d(v_i) \quad \Rightarrow \quad e(F_i[C]) > cn.\]
- Few small “containers” are containing independent sets of F_i.

Kleitman–Winston [1982]
The number of C_4-free graphs is $2^{O(\text{ex}(n,C_4))} = 2^{O(n^{3/2})}$.

- For $i \in [n]$, let v_i be the min. degree vertex of $H_i := G - \{v_1, \ldots, v_{i-1}\}$.
- $N(v_i)$ is P_3-free (path with two edges).
- $F_i := H_i^2$, $V(F_i) = V(H_i)$, $E(F_i) = \{uv : d_{H_i}(u,v) = 2\}$.
- $N(v_i)$ is an independent set in F_i.
- Minimum degree of H_i implies: $\alpha(F_i) \leq n/d(v_i)$.
- Minimum degree + C_4-freeness of H_i:
 $|C| > (1 + 2c)n/d(v_i) \implies e(F_i[C]) > cn$.
- Few small “containers” are containing independent sets of F_i.
- Fix a vertex ordering,
The number of C_4-free graphs is $2^{O(ex(n,C_4))} = 2^{O(n^{3/2})}$.

- For $i \in [n]$, let v_i be the min. degree vertex of $H_i := G - \{v_1, \ldots, v_{i-1}\}$.
- $N(v_i)$ is P_3-free (path with two edges).
- $F_i := H_i^2$, $V(F_i) = V(H_i)$, $E(F_i) = \{uv : d_{H_i}(u,v) = 2\}$.
- $N(v_i)$ is an independent set in F_i.
- Minimum degree of H_i implies: $\alpha(F_i) \leq n/d(v_i)$.
- Minimum degree + C_4-freeness of H_i:
 \[|C| > (1 + 2c)n/d(v_i) \implies e(F_i[C]) > cn. \]
- Few small “containers” are containing independent sets of F_i.
- Fix a vertex ordering, degree sequence,
For $i \in [n]$, let v_i be the min. degree vertex of $H_i := G - \{v_1, \ldots, v_{i-1}\}$.

- $N(v_i)$ is P_3-free (path with two edges).
- $F_i := H_i^2$, $V(F_i) = V(H_i)$, $E(F_i) = \{uv : d_{H_i}(u, v) = 2\}$.
- $N(v_i)$ is an independent set in F_i.
- Minimum degree of H_i implies: $\alpha(F_i) \leq n/d(v_i)$.
- Minimum degree + C_4-freeness of H_i:
 \[|C| > (1 + 2c)n/d(v_i) \quad \text{---} \quad e(F_i[C]) > cn. \]
- Few small “containers” are containing independent sets of F_i.
- Fix a vertex ordering, degree sequence, a (small) container containing its neighborhood for each vertex.
The number of C_4-free graphs is $2^{O(\text{ex}(n,C_4))} = 2^{O(n^{3/2})}$.

- For $i \in [n]$, let v_i be the min. degree vertex of $H_i := G - \{v_1, \ldots, v_{i-1}\}$.
- $N(v_i)$ is P_3-free (path with two edges).
- $F_i := H_i^2$, $V(F_i) = V(H_i)$, $E(F_i) = \{uv : d_{H_i}(u, v) = 2\}$.
- $N(v_i)$ is an independent set in F_i.
- Minimum degree of H_i implies: $\alpha(F_i) \leq n/d(v_i)$.
- Minimum degree + C_4-freeness of H_i:
 \[|C| > (1 + 2c)n/d(v_i) \quad \Rightarrow \quad e(F_i[C]) > cn.\]
- Few small “containers” are containing independent sets of F_i.
- Fix a vertex ordering, degree sequence, a (small) container containing its neighborhood for each vertex choose the neighborhood.
For every $p \in (0, 1)$, there is a $c > 0$ that the largest C_4-free subgraph of $G(n, p)$ has at most $(1 - c) \cdot \text{ex}(n, C_4)$ edges w.h.p..

Want to embed a C_4-free graph H with $(1 - c) \cdot \text{ex}(n, C_4)$ edges.
C₄-free graphs in random graphs:

Balogh, Wagner [2015+]

For every \(p \in (0, 1) \), there is a \(c > 0 \) such that the largest C₄-free subgraph of \(G(n, p) \) has at most \((1 - c) \cdot \text{ex}(n, C_4) \) edges w.h.p..

- Want to embed a C₄-free graph \(H \) with \((1 - c) \cdot \text{ex}(n, C_4) \) edges.
- Fix a vertex ordering \(\pi \),
Balogh, Wagner [2015+]
For every $p \in (0, 1)$, there is a $c > 0$ that the largest C_4-free subgraph of $G(n, p)$ has at most $(1 - c) \cdot \text{ex}(n, C_4)$ edges w.h.p.

- Want to embed a C_4-free graph H with $(1 - c) \cdot \text{ex}(n, C_4)$ edges.
- Fix a vertex ordering π, **forward** degree sequence $\{d_i\}$,
Want to embed a C_4-free graph H with $(1 - c) \cdot \text{ex}(n, C_4)$ edges. Fix a vertex ordering π, **forward** degree sequence $\{d_i\}$, a (small) container C_i containing **forward** neighborhood of vertex v_i.

For every $p \in (0, 1)$, there is a $c > 0$ that the largest C_4-free subgraph of $G(n, p)$ has at most $(1 - c) \cdot \text{ex}(n, C_4)$ edges w.h.p.

Balogh, Wagner [2015+]

For every $p \in (0, 1)$, there is a $c > 0$ that the largest C_4-free subgraph of $G(n, p)$ has at most $(1 - c) \cdot \text{ex}(n, C_4)$ edges w.h.p.
For every $p \in (0, 1)$, there is a $c > 0$ that the largest C_4-free subgraph of $G(n, p)$ has at most $(1 - c) \cdot \text{ex}(n, C_4)$ edges w.h.p..

- Want to embed a C_4-free graph H with $(1 - c) \cdot \text{ex}(n, C_4)$ edges.
- Fix a vertex ordering π, forward degree sequence $\{d_i\}$,
- a (small) container C_i containing forward neighborhood of vertex v_i.
- C_i is not much larger than d_i!
C_4-free graphs in random graphs:

<table>
<thead>
<tr>
<th>Balogh, Wagner [2015+]</th>
</tr>
</thead>
<tbody>
<tr>
<td>For every $p \in (0, 1)$, there is a $c > 0$ that the largest C_4-free subgraph of $G(n, p)$ has at most $(1 - c) \cdot \text{ex}(n, C_4)$ edges w.h.p..</td>
</tr>
</tbody>
</table>

- Want to embed a C_4-free graph H with $(1 - c) \cdot \text{ex}(n, C_4)$ edges.
- Fix a vertex ordering π, **forward** degree sequence $\{d_i\}$,
- a (small) container C_i containing **forward** neighborhood of vertex v_i.
- C_i is not much larger than d_i!
- For a fixed vertex ordering, degree sequence, containers: can corresponding H be in $G(n, p)$?
C_4-free graphs in random graphs:

Balogh, Wagner [2015+]

For every $p \in (0, 1)$, there is a $c > 0$ that the largest C_4-free subgraph of $G(n, p)$ has at most $(1 - c) \cdot \text{ex}(n, C_4)$ edges w.h.p..

- Want to embed a C_4-free graph H with $(1 - c) \cdot \text{ex}(n, C_4)$ edges.
- Fix a vertex ordering π, **forward** degree sequence $\{d_i\}$,
- a (small) container C_i containing **forward** neighborhood of vertex v_i.
- C_i is not much larger than d_i!
- For a fixed vertex ordering, degree sequence, containers: can corresponding H be in $G(n, p)$?
- $E(H)$ does not have many spaces to be placed, random graph likely will not contain there sufficient amount of edges.
General framework — examples

Example (Erdős–Turán problem)

- \(V = \{1, \ldots, n\} \),
- \(\mathcal{H} = k \)-term APs in \([n]\).
<table>
<thead>
<tr>
<th>Example (Erdős–Turán problem)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V = {1, \ldots, n}$,</td>
</tr>
<tr>
<td>$\mathcal{H} = k$-term APs in $[n]$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Example (Turán problem)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V =$ edges of K_n,</td>
</tr>
<tr>
<td>$\mathcal{H} =$ edge-sets of copies of K_k in K_n.</td>
</tr>
</tbody>
</table>
Example (Erdős–Turán problem)
- $V = \{1, \ldots, n\}$,
- $\mathcal{H} = k$-term APs in $[n]$.

Example (Turán problem)
- $V = \text{edges of } K_n$,
- $\mathcal{H} = \text{edge-sets of copies of } K_k \text{ in } K_n$.

Example (sum-free sets)
- $V = \text{an Abelian group}$,
- $\mathcal{H} = \text{sets of the form } \{x, y, z\} \text{ with } x + y = z$ (Schur triples).
Theorem (Balogh–Morris–Samotij [2015])

For every k, c, ε there is a C that the following holds. Let $\mathcal{H} \subseteq \binom{V}{k}$ such that for $\ell \in [k]$, $p \in [0, 1]$

$$\Delta_\ell(\mathcal{H}) \leq c \cdot p^{\ell-1} \frac{e(\mathcal{H})}{v(\mathcal{H})}.$$
For every k, c, ε there is a C that the following holds. Let $\mathcal{H} \subseteq \binom{V}{k}$ such that for $\ell \in [k]$, $p \in [0, 1]$

$$\Delta_\ell(\mathcal{H}) \leq c \cdot p^{\ell-1} \frac{e(\mathcal{H})}{v(\mathcal{H})}.$$

Let $\mathcal{F} = \{A \subseteq V : |\mathcal{H}[A]| \geq \varepsilon \cdot e(\mathcal{H})\}$. Similar result was obtained independently by Saxton and Thomason.

Explain: Example of triangle-free graphs.
Theorem (Balogh–Morris–Samotij [2015])

For every k, c, ε there is a C that the following holds. Let $\mathcal{H} \subseteq \binom{V}{k}$ such that for $\ell \in [k]$, $p \in [0, 1]$

$$\Delta_\ell(\mathcal{H}) \leq c \cdot p^{\ell-1} \frac{e(\mathcal{H})}{v(\mathcal{H})}.$$

Let $\mathcal{F} = \{A \subseteq V : |\mathcal{H}[A]| \geq \varepsilon \cdot e(\mathcal{H})\}$. Then there are:

- a very small family $S \subseteq \binom{V(\mathcal{H})}{\leq Cp \cdot v(\mathcal{H})}$ of labels,
Transference Theorem

Theorem (Balogh–Morris–Samotij [2015])

For every k, c, ε there is a C that the following holds. Let $\mathcal{H} \subseteq \binom{V}{k}$ such that for $\ell \in [k]$, $p \in [0, 1]$

$$\Delta_\ell(\mathcal{H}) \leq c \cdot p^{\ell-1} \frac{e(\mathcal{H})}{\nu(\mathcal{H})}.\]

Let $\mathcal{F} = \{A \subseteq V : |\mathcal{H}[A]| \geq \varepsilon \cdot e(\mathcal{H})\}$. Then there are:

- a very small family $S \subseteq \binom{V(\mathcal{H})}{\leq Cp \cdot \nu(\mathcal{H})}$ of labels,

- $f : S \to \mathcal{F}^c$ (maps each label to a set that is sparse in \mathcal{H}),
Transference Theorem

Theorem (Balogh–Morris–Samotij [2015])

For every \(k, c, \varepsilon \) there is a \(C \) that the following holds. Let \(\mathcal{H} \subseteq \binom{V}{k} \) such that for \(\ell \in [k], p \in [0, 1] \)

\[
\Delta_{\ell}(\mathcal{H}) \leq c \cdot p^{\ell-1} \frac{e(\mathcal{H})}{v(\mathcal{H})}.
\]

Let \(\mathcal{F} = \{ A \subseteq V : |\mathcal{H}[A]| \geq \varepsilon \cdot e(\mathcal{H}) \} \). Then there are:

- a very small family \(S \subseteq \binom{V(\mathcal{H})}{\leq Cp \cdot v(\mathcal{H})} \) of labels,
- \(f : S \to \mathcal{F}^c \) (maps each label to a set that is sparse in \(\mathcal{H} \)),
- a labeling function \(g : I(\mathcal{H}) \to S \),

Similar result was obtained independently by Saxton and Thomason.

Explain: Example of triangle-free graphs.
Transference Theorem

Theorem (Balogh–Morris–Samotij [2015])

For every k, c, ε there is a C that the following holds. Let $\mathcal{H} \subseteq \binom{V}{k}$ such that for $\ell \in [k], \ p \in [0, 1]$

$$\Delta_\ell(\mathcal{H}) \leq c \cdot p^{\ell-1} \frac{e(\mathcal{H})}{v(\mathcal{H})}.$$

Let $\mathcal{F} = \{ A \subseteq V : |\mathcal{H}[A]| \geq \varepsilon \cdot e(\mathcal{H}) \}$. Then there are:

- a very small family $S \subseteq \binom{V(\mathcal{H})}{\leq Cp \cdot v(\mathcal{H})}$ of labels,
- $f : S \to \mathcal{F}^c$ (maps each label to a set that is sparse in \mathcal{H}),
- a labeling function $g : \mathcal{I}(\mathcal{H}) \to S$,

such that for every $I \in \mathcal{I}(\mathcal{H})$,
Theorem (Balogh–Morris–Samotij [2015])

For every k, c, ε there is a C that the following holds. Let $\mathcal{H} \subseteq \binom{V}{k}$ such that for $\ell \in [k], p \in [0, 1]$

$$\Delta_{\ell}(\mathcal{H}) \leq c \cdot p^{\ell-1} \frac{e(\mathcal{H})}{v(\mathcal{H})}.$$

Let $\mathcal{F} = \{A \subseteq V : |\mathcal{H}[A]| \geq \varepsilon \cdot e(\mathcal{H})\}$. Then there are:

- a very small family $S \subseteq \binom{V(\mathcal{H})}{\leq Cp \cdot v(\mathcal{H})}$ of labels,
- $f : S \to \mathcal{F}^c$ (maps each label to a set that is sparse in \mathcal{H}),
- a labeling function $g : \mathcal{I}(\mathcal{H}) \to S$,

such that for every $I \in \mathcal{I}(\mathcal{H})$,

$$g(I) \subseteq I \quad \text{and} \quad I \setminus g(I) \subseteq f(g(I)).$$

Similar result was obtained independently by Saxton and Thomason. Explain: Example of triangle-free graphs.
Transference Theorem

Theorem (Balogh–Morris–Samotij [2015])

For every k, c, ε there is a C that the following holds. Let $\mathcal{H} \subseteq \binom{V}{k}$ such that for $\ell \in [k]$, $p \in [0, 1]$

$$\Delta_\ell(\mathcal{H}) \leq c \cdot p^{\ell-1} \frac{e(\mathcal{H})}{v(\mathcal{H})}.$$

Let $\mathcal{F} = \{A \subseteq V : |\mathcal{H}[A]| \geq \varepsilon \cdot e(\mathcal{H})\}$. Then there are:

- a very small family $S \subseteq \binom{V(\mathcal{H})}{C p \cdot v(\mathcal{H})}$ of labels,
- $f : S \rightarrow \mathcal{F}^c$ (maps each label to a set that is sparse in \mathcal{H}),
- a labeling function $g : \mathcal{I}(\mathcal{H}) \rightarrow S$,

such that for every $I \in \mathcal{I}(\mathcal{H})$,

$$g(I) \subseteq I \quad \text{and} \quad I \setminus g(I) \subseteq f(g(I)).$$

Similar result was obtained independently by Saxton and Thomason.

Explain: Example of triangle-free graphs.
Transference Theorem: — illustration

- Dense sets
- Independent sets
- Small sets (labels)
Transference Theorem: — illustration

\[\mathcal{F} \]

.dense sets

\[f(S) \]

.covering sets

\[\mathcal{I}(\mathcal{H}) \]

.independent sets

\[S \]

.small sets (labels)
Transference Theorem: illustration

\[\mathcal{F} \]

\[f(\mathcal{S}) \]

\[\mathcal{I}(\mathcal{H}) \]

\[S \]

dense sets
covering sets
independent sets
small sets (labels)
Transference Theorem: illustration

- Dense sets
- Covering sets
- Independent sets
- Small sets (labels)

\[\mathcal{F} \]

\[f(S) \]

\[\mathcal{I}(\mathcal{H}) \]

\[g \]

\[g(l) \]
Transference Theorem: — illustration

- dense sets
- covering sets
- independent sets
- small sets (labels)

\[f(g(I)) \]

\[f(S) \]
Transference Theorem: — illustration

Let \(f(g(I)) \) be the function representing the transference of dense sets from \(I(\mathcal{H}) \) to \(\mathcal{F} \), where \(I(\mathcal{H}) \) represents independent sets and \(\mathcal{F} \) represents covering sets. The function \(f(S) \) indicates the mapping from covering sets to the image set.

The small sets (labels) are denoted by \(g(I) \).
Transference theorems

Theorem (Conlon–Gowers [2009+], Schacht [2009+])

extremal result \mathcal{R}

\Rightarrow random analogue of \mathcal{R}.

supersaturation

Dr D. Conlon Sir W.T. Gowers Dr M. Schacht
Szemerédi’s theorem

Theorem (Szemerédi [1975])

For every $k \geq 3$, the largest subset of $\{1, \ldots, n\}$ with no k-term AP has $o(n)$ elements.

Endre Szemerédi
Random analogue of Szemerédi’s theorem

Theorem (Kohayakawa–Łuczak–Rödl [1996])

For every $\delta > 0$, there exists a C such that if $p(n) \geq Cn^{-1/2}$, then a.a.s.: the p-random subset $[n_p]$ satisfies:

Every $A \subseteq [n]_p$ with $|A| \geq \delta|[n]_p|$ contains a 3-term AP.
Transference theorems — corollary

Theorem (Conlon–Gowers [2009+], Schacht [2009+])

extremal result \mathcal{R}

$+$

\implies

random analogue of \mathcal{R}

supersaturation

For every $k \geq 3$ and $\delta > 0$, if $p(n) \geq C(k, \delta) \cdot n^{-1/k-1}$, then a.a.s. \mathcal{A} satisfies that every $A \subseteq [n]_p$ with $|A| \geq \delta|\mathcal{A}|$ contains a k-term AP.
Transference theorems — corollary

Theorem (Conlon–Gowers [2009+], Schacht [2009+])

extremal result \mathcal{R}

$+ \quad \implies \quad$ random analogue of \mathcal{R}

supersaturation

Corollary (Random analogue of Szemerédi’s theorem)

For every $k \geq 3$ and $\delta > 0$, if $p(n) \geq C(k, \delta) \cdot n^{-\frac{1}{k-1}}$, then a.a.s. $[n]_p$ satisfies that every $A \subseteq [n]_p$ with $|A| \geq \delta|[n]_p|$ contains a k-term AP.
Theorem (Turán [1941])

For every $k \geq 3$,

$$
\text{ex}(n, K_k) = e(T_{k-1}(n)) = \left(1 - \frac{1}{k-1} + o(1)\right) \binom{n}{2}.
$$
Transference theorems — corollary

Theorem (Turán [1941])

For every $k \geq 3$,

$$
\text{ex}(n, K_k) = e(T_{k-1}(n)) = \left(1 - \frac{1}{k-1} + o(1)\right) \binom{n}{2}.
$$

Motivated by: Haxell, Kohayakawa, Łuczak, Rodl.
by many others later (or earlier): Babai, Gerke, Simonovits, Spencer, Steger, Szabó, Sudakov, Vu, ...
Theorem (Turán [1941])

For every $k \geq 3$,

$$\text{ex}(n, K_k) = e(T_{k-1}(n)) = \left(1 - \frac{1}{k-1} + o(1)\right) \binom{n}{2}.$$

Motivated by: Haxell, Kohayakawa, Łuczak, Rodl.
by many others later (or earlier): Babai, Gerke, Simonovits, Spencer, Steger, Szabó, Sudakov, Vu, …

Theorem (Conlon–Gowers [2009+], Schacht [2009+])

For $p = p(n) \gg n^{-\frac{2}{k+1}}$ a.a.s.:
Transference theorems — corollary

Theorem (Turán [1941])

For every $k \geq 3$,

$$\text{ex}(n, K_k) = e(T_{k-1}(n)) = \left(1 - \frac{1}{k-1} + o(1)\right) \binom{n}{2}.$$

Motivated by: Haxell, Kohayakawa, Łuczak, Rodl.
by many others later (or earlier): Babai, Gerke, Simonovits, Spencer, Steger, Szabó, Sudakov, Vu,…

Theorem (Conlon–Gowers [2009+], Schacht [2009+])

For $p = p(n) \gg n^{-\frac{2}{k+1}}$ a.a.s.:

$$\text{ex}(G(n, p), K_k) = \left(1 - \frac{1}{k-1} + o(1)\right) \cdot e(G(n, p)).$$

This is usually referred to as the random analogue of Turán’s theorem.
Certain hypergraphs have only few independent sets.
Counting Independent sets in Hypergraphs

Balogh–Morris–Samotij, Saxton–Thomason [2015]

Certain hypergraphs have only few independent sets.

Corollary (Random analogue of Szemerédi’s theorem)

For every $k \geq 3$ and $\delta > 0$, if $p(n) \geq C(k, \delta) \cdot n^{-\frac{1}{k-1}}$, then a.a.s. $[n]_p$ satisfies that every $A \subseteq [n]_p$ with $|A| \geq \delta|\binom{n}{2}|$ contains a k-term AP.
Counting Independent sets in Hypergraphs

Balogh–Morris–Samotij, Saxton–Thomason [2015]
Certain hypergraphs have only few independent sets.

Corollary (Random analogue of Szemerédi’s theorem)
For every $k \geq 3$ and $\delta > 0$, if $p(n) \geq C(k, \delta) \cdot n^{-\frac{1}{k-1}}$, then a.a.s. $[n]_p$ satisfies that every $A \subseteq [n]_p$ with $|A| \geq \delta |[n]_p|$ contains a k-term AP.

Corollary (Random analogue of Turán’s theorem)
For $p = p(n) \gg n^{-\frac{2}{k+1}}$ a.a.s.:

$$\text{ex}(G(n, p), K_k) = \left(1 - \frac{1}{k-1} + o(1)\right) \cdot e(G(n, p)).$$
Balogh–Morris–Samotij, Saxton–Thomason [2015]

Certain hypergraphs have only few independent sets.
Counting Independent sets in Hypergraphs

Balogh–Morris–Samotij, Saxton–Thomason [2015]

Certain hypergraphs have only few independent sets.

Corollary (Counting analogue of Szemerédi’s theorem)

For every $k \geq 3$ and $\delta > 0$, if $m \geq C(k, \delta) n^{1-\frac{1}{k-1}}$, then

$$\# \text{m-subsets of } [n] \text{ with no } k\text{-term AP} \leq \binom{\delta n}{m}.$$
Counting Independent sets in Hypergraphs

Balogh–Morris–Samotij, Saxton–Thomason [2015]

Certain hypergraphs have only few independent sets.

Corollary (Counting analogue of Szemerédi’s theorem)

For every $k \geq 3$ and $\delta > 0$, if $m \geq C(k, \delta)n^{1-\frac{1}{k-1}}$, then

$$\#m\text{-subsets of } [n] \text{ with no } k\text{-term AP} \leq \binom{\delta n}{m}.$$

Theorem (Erdős–Kleitman–Rothschild [1976])

There are at most $2^{(1+o(1)) \cdot \text{ex}(n,K_k)} K_k$-free graphs on n vertices.