Coloring Squares of Planar Graphs with no 4-cycles and no 5-cycles

Bobby Jaeger Dan Cranston

Virginia Commonwealth University

May 17, 2015 / 28th Cumberland Conference
Definitions

- $G = (V, E)$ is a finite simple graph (assume G is connected).
Definitions

- $G = (V, E)$ is a finite simple graph (assume G is connected).
- For $v \in V$, $d(v)$ is the number of edges incident to v
Definitions

- $G = (V, E)$ is a finite simple graph (assume G is connected).
- For $v \in V$, $d(v)$ is the number of edges incident to v.
- A k-vertex (k^+-vertex, k^--vertex, k-face) is a vertex v such that $d(v) = k$ (respectively $d(v) \geq k$, $d(v) \leq k$, or $\ell(f) = k$).
Definitions

- $G = (V, E)$ is a finite simple graph (assume G is connected).
- For $v \in V$, $d(v)$ is the number of edges incident to v.
- A k-vertex (k^+-vertex, k^--vertex, k-face) is a vertex v such that $d(v) = k$ (respectively $d(v) \geq k$, $d(v) \leq k$, or $\ell(f) = k$).
- A proper k-coloring of G is an assignment $\phi : V \to \{1, 2, \ldots, k\}$ such that $\phi(u) \neq \phi(v)$ if $uv \in E$.
Definitions

- \(G = (V, E) \) is a finite simple graph (assume \(G \) is connected).
- For \(v \in V \), \(d(v) \) is the number of edges incident to \(v \).
- A \(k \)-vertex (\(k^+ \)-vertex, \(k^- \)-vertex, \(k \)-face) is a vertex \(v \) such that \(d(v) = k \) (respectively \(d(v) \geq k \), \(d(v) \leq k \), or \(\ell(f) = k \)).
- A proper \(k \)-coloring of \(G \) is an assignment \(\phi : V \to \{1, 2, \ldots, k\} \) such that \(\phi(u) \neq \phi(v) \) if \(uv \in E \).
- The chromatic number of \(G \), denoted \(\chi(G) \), is the smallest value \(k \) such that \(G \) has a proper \(k \)-coloring.
Coloring Planar Graphs

- Four Color Theorem (1976): If G is a planar graph, then $\chi(G) \leq 4$.

Grötzsch's Theorem (1959): If G is a planar graph without 3-cycles, then $\chi(G) \leq 3$.

Conjecture (Steinberg, 1976): If G is a planar graph without 4-cycles or 5-cycles, then $\chi(G) \leq 3$.

Bobby Jaeger, Dan Cranston

Coloring Squares of Planar Graphs with no 4- or 5-cycles
Coloring Planar Graphs

- Four Color Theorem (1976): If G is a planar graph, then $\chi(G) \leq 4$.
- Grötzsch’s Theorem (1959): If G is a planar graph without 3-cycles, then $\chi(G) \leq 3$.
Coloring Planar Graphs

- Four Color Theorem (1976): If G is a planar graph, then $\chi(G) \leq 4$.
- Grötzsch’s Theorem (1959): If G is a planar graph without 3-cycles, then $\chi(G) \leq 3$.
- Conjecture (Steinberg, 1976): If G is a planar graph without 4-cycles or 5-cycles, then $\chi(G) \leq 3$.
Coloring Planar Graphs

- Four Color Theorem (1976): If G is a planar graph, then $\chi(G) \leq 4$.
- Grötzsch’s Theorem (1959): If G is a planar graph without 3-cycles, then $\chi(G) \leq 3$.
- Conjecture (Steinberg, 1976): If G is a planar graph without 4-cycles or 5-cycles, then $\chi(G) \leq 3$.
Def: If G is a graph, then G^2 is the graph with the same vertex set as G, and where u and v are adjacent in G^2 if and only if $dist_G(u, v) \in \{1, 2\}$.

Finding a proper vertex coloring of G^2 is equivalent to finding a coloring of G where vertices cannot have the same color as each other if they are within distance 2 of each other.

For any graph G with maximum degree Δ, any proper vertex coloring of G^2 will require at least $\Delta + 1$ colors.
Def: If G is a graph, then G^2 is the graph with the same vertex set as G, and where u and v are adjacent in G^2 if and only if $\text{dist}_G(u, v) \in \{1, 2\}$.

Finding a proper vertex coloring of G^2 is equivalent to finding a coloring of G where vertices cannot have the same color as each other if they are within distance 2 of each other.

For any graph G with maximum degree Δ, any proper vertex coloring of G^2 will require at least $\Delta + 1$ colors.
Def: If G is a graph, then G^2 is the graph with the same vertex set as G, and where u and v are adjacent in G^2 if and only if $dist_G(u, v) \in \{1, 2\}$.

Finding a proper vertex coloring of G^2 is equivalent to finding a coloring of G where vertices cannot have the same color as each other if they are within distance 2 of each other. For any graph G with maximum degree Δ, any proper vertex coloring of G^2 will require at least $\Delta + 1$ colors.
Def: If \(G \) is a graph, then \(G^2 \) is the graph with the same vertex set as \(G \), and where \(u \) and \(v \) are adjacent in \(G^2 \) if and only if \(\text{dist}_G(u, v) \in \{1, 2\} \).

Finding a proper vertex coloring of \(G^2 \) is equivalent to finding a coloring of \(G \) where vertices cannot have the same color as each other if they are within distance 2 of each other.
Def: If G is a graph, then G^2 is the graph with the same vertex set as G, and where u and v are adjacent in G^2 if and only if $dist_G(u, v) \in \{1, 2\}$.

Finding a proper vertex coloring of G^2 is equivalent to finding a coloring of G where vertices cannot have the same color as each other if they are within distance 2 of each other.

For any graph G with maximum degree Δ, any proper vertex coloring of G^2 will require at least $\Delta + 1$ colors.
Coloring the Square of a Graph

- Def: If G is a graph, then G^2 is the graph with the same vertex set as G, and where u and v are adjacent in G^2 if and only if $\text{dist}_G(u, v) \in \{1, 2\}$.

- Finding a proper vertex coloring of G^2 is equivalent to finding a coloring of G where vertices cannot have the same color as each other if they are within distance 2 of each other.

- For any graph G with maximum degree Δ, any proper vertex coloring of G^2 will require at least $\Delta + 1$ colors.
Coloring the Square of Planar Graphs

Conjecture (Wegner, 1977): Let G be a planar graph with maximum degree Δ. Then $\chi(G^2) \leq \begin{cases}
7 & \text{if } \Delta = 3 \\
\Delta + 5 & \text{if } 4 \leq \Delta \leq 7 \\
\left\lfloor \frac{3\Delta}{2} \right\rfloor + 1 & \text{otherwise}
\end{cases}$.
Conjecture (Wegner, 1977): Let G be a planar graph with maximum degree Δ. Then $\chi(G^2) \leq \begin{cases} 7 & \text{if } \Delta = 3 \\ \Delta + 5 & \text{if } 4 \leq \Delta \leq 7 \\ \left\lfloor \frac{3\Delta}{2} \right\rfloor + 1 & \text{otherwise} \end{cases}$.
Coloring the Square of Planar Graphs

- Conjecture (Wegner, 1977): Let G be a planar graph with maximum degree Δ. Then $\chi(G^2) \leq \begin{cases} 7 & \text{if } \Delta = 3 \\ \Delta + 5 & \text{if } 4 \leq \Delta \leq 7 \\ \left\lfloor \frac{3\Delta}{2} \right\rfloor + 1 & \text{otherwise} \end{cases}$.

To use substantially fewer than $\frac{3\Delta}{2}$ colors, we must forbid 4-cycles.

Bobby Jaeger, Dan Cranston
Coloring Squares of Planar Graphs with no 4- or 5-cycles
Def: the **girth** of a graph G is the length of the shortest cycle in G.
Def: the **girth** of a graph G is the length of the shortest cycle in G.

Borodin et al. (2004): If G is a planar graph of girth at least seven and with maximum degree $\Delta \geq 30$, then $\chi(G^2) = \Delta + 1$.

Dvořák et al. (2007): If G is a planar graph of girth at least six and with $\Delta \geq 30$, then $\chi(G^2) \leq \Delta + 2$.

Provided constructions of graphs of girth six and arbitrarily large Δ needing $\Delta + 2$ colors.

Zhu, Lu, Wang, and Chen (2012): If G is a planar graph without 4-cycles or 5-cycles and with $\Delta \geq 9$, then $\chi(G^2) \leq \Delta + 5$.

Can we do better?
Def: the \textbf{girth} of a graph G is the length of the shortest cycle in G.

Borodin et al. (2004): If G is a planar graph of girth at least seven and with maximum degree $\Delta \geq 30$, then $\chi(G^2) = \Delta + 1$.

Dvořák et al. (2007): If G is a planar graph of girth at least six and with $\Delta \geq 8821$ (later improved to $\Delta \geq 30$), then $\chi(G^2) \leq \Delta + 2$.

Can we do better?
Def: the girth of a graph G is the length of the shortest cycle in G.

Borodin et al. (2004): If G is a planar graph of girth at least seven and with maximum degree $\Delta \geq 30$, then $\chi(G^2) = \Delta + 1$.

Dvořák et al. (2007): If G is a planar graph of girth at least six and with $\Delta \geq 8821$ (later improved to $\Delta \geq 30$), then $\chi(G^2) \leq \Delta + 2$.

Provided constructions of graphs of girth six and arbitrarily large Δ needing $\Delta + 2$ colors.
Def: the **girth** of a graph G is the length of the shortest cycle in G.

- **Borodin et al. (2004):** If G is a planar graph of girth at least seven and with maximum degree $\Delta \geq 30$, then $\chi(G^2) = \Delta + 1$.

- **Dvořák et al. (2007):** If G is a planar graph of girth at least six and with $\Delta \geq 8821$ (later improved to $\Delta \geq 30$), then $\chi(G^2) \leq \Delta + 2$.
 - Provided constructions of graphs of girth six and arbitrarily large Δ needing $\Delta + 2$ colors.

- **Zhu, Lu, Wang, and Chen (2012):** If G is a planar graph without 4-cycles or 5-cycles and with $\Delta \geq 9$, then $\chi(G^2) \leq \Delta + 5$.

Can we do better?
Bobby Jaeger, Dan Cranston
Coloring Squares of Planar Graphs with no 4- or 5-cycles
Def: the **girth** of a graph G is the length of the shortest cycle in G.

Borodin et al. (2004): If G is a planar graph of girth at least seven and with maximum degree $\Delta \geq 30$, then $\chi(G^2) = \Delta + 1$.

Dvořák et al. (2007): If G is a planar graph of girth at least six and with $\Delta \geq 8821$ (later improved to $\Delta \geq 30$), then $\chi(G^2) \leq \Delta + 2$.

- Provided constructions of graphs of girth six and arbitrarily large Δ needing $\Delta + 2$ colors.

Zhu, Lu, Wang, and Chen (2012): If G is a planar graph without 4-cycles or 5-cycles and with $\Delta \geq 9$, then $\chi(G^2) \leq \Delta + 5$.

Can we do better?
The Discharging Method

- The Discharging Method is a form of counting argument that lets us prove structural results about graphs.
The Discharging Method

The Discharging Method is a form of counting argument that lets us prove structural results about graphs.

- Used in the proof of the Four Color Theorem.

Elements of the graph are given a value called "charge". The charge is moved around (never created or destroyed) according to specially tailored "discharging rules". By assuming certain structures do not appear in the graph, we can reach some contradiction based on the charge. Thus the graph must contain one of the given structures. Often the structures chosen are those that cannot appear if the graph is a minimal counterexample to some claim. We call such structures reducible for the claim.

If a counterexample \(G\) cannot contain some configuration, but by discharging it must contain it, then no such counterexample exists.
The Discharging Method

- The Discharging Method is a form of counting argument that lets us prove structural results about graphs.
 - Used in the proof of the Four Color Theorem.
- Elements of the graph are given a value called “charge”.

The charge is moved around (never created or destroyed) according to specially tailored “discharging rules”. By assuming certain structures do not appear in the graph, we can reach some contradiction based on the charge. Thus the graph must contain one of the given structures. Often the structures chosen are those that cannot appear if the graph is a minimal counterexample to some claim. We call such structures reducible for the claim.

If a counterexample G cannot contain some configuration, but by discharging it must contain it, then no such counterexample exists.
The Discharging Method

- The Discharging Method is a form of counting argument that lets us prove structural results about graphs.
 - Used in the proof of the Four Color Theorem.
- Elements of the graph are given a value called “charge”.
- The charge is moved around (never created or destroyed) according to specially tailored “discharging rules”.

By assuming certain structures do not appear in the graph, we can reach some contradiction based on the charge. Thus the graph must contain one of the given structures. Often the structures chosen are those that cannot appear if the graph is a minimal counterexample to some claim. We call such structures reducible for the claim. If a counterexample G cannot contain some configuration, but by discharging it must contain it, then no such counterexample exists.
The Discharging Method

- The Discharging Method is a form of counting argument that lets us prove structural results about graphs.
 - Used in the proof of the Four Color Theorem.
- Elements of the graph are given a value called “charge”.
- The charge is moved around (never created or destroyed) according to specially tailored “discharging rules”.
- By assuming certain structures do not appear in the graph, we can reach some contradiction based on the charge. Thus the graph must contain one of the given structures.
The Discharging Method

- The Discharging Method is a form of counting argument that lets us prove structural results about graphs.
 - Used in the proof of the Four Color Theorem.
- Elements of the graph are given a value called “charge”.
- The charge is moved around (never created or destroyed) according to specially tailored “discharging rules”.
- By assuming certain structures do not appear in the graph, we can reach some contradiction based on the charge. Thus the graph must contain one of the given structures.
- Often the structures chosen are those that cannot appear if the graph is a minimal counterexample to some claim.

Bobby Jaeger, Dan Cranston

Coloring Squares of Planar Graphs with no 4- or 5-cycles
The Discharging Method

- The Discharging Method is a form of counting argument that lets us prove structural results about graphs.
 - Used in the proof of the Four Color Theorem.
- Elements of the graph are given a value called “charge”.
- The charge is moved around (never created or destroyed) according to specially tailored “discharging rules”.
- By assuming certain structures do not appear in the graph, we can reach some contradiction based on the charge. Thus the graph must contain one of the given structures.
- Often the structures chosen are those that cannot appear if the graph is a minimal counterexample to some claim.
 - We call such structures reducible for the claim.
The Discharging Method

- The Discharging Method is a form of counting argument that lets us prove structural results about graphs.
 - Used in the proof of the Four Color Theorem.
- Elements of the graph are given a value called “charge”.
- The charge is moved around (never created or destroyed) according to specially tailored “discharging rules”.
- By assuming certain structures do not appear in the graph, we can reach some contradiction based on the charge. Thus the graph must contain one of the given structures.
- Often the structures chosen are those that cannot appear if the graph is a minimal counterexample to some claim.
 - We call such structures reducible for the claim.
- If a counterexample G cannot contain some configuration, but by discharging it must contain it, then no such counterexample exists.
Statement and Proof Outline

Theorem: Let G be a planar graph without 4-cycles or 5-cycles, and with maximum degree $\Delta \geq 32$. Then $\chi(G^2) \leq \Delta + 3$.
Statement and Proof Outline

Theorem: Let G be a planar graph without 4-cycles or 5-cycles, and with maximum degree $\Delta \geq 32$. Then $\chi(G^2) \leq \Delta + 3$.

Proof: Let G be a minimal counterexample.
Statement and Proof Outline

Theorem: Let G be a planar graph without 4-cycles or 5-cycles, and with maximum degree $\Delta \geq 32$. Then $\chi(G^2) \leq \Delta + 3$.

Proof: Let G be a minimal counterexample. Assign to each vertex and face an initial charge:

$$ch(v) = d(v) - 4 \quad \quad ch(f) = \ell(f) - 4$$
Theorem: Let G be a planar graph without 4-cycles or 5-cycles, and with maximum degree $\Delta \geq 32$. Then $\chi(G^2) \leq \Delta + 3$.

Proof: Let G be a minimal counterexample. Assign to each vertex and face an initial charge:

$$ch(v) = d(v) - 4 \quad \quad \quad ch(f) = \ell(f) - 4$$

By Euler’s Formula ($|V| - |E| + |F| = 2$), the initial charges sum to

$$\sum_{v\in V} ch(v) + \sum_{f\in F} ch(f) = \sum_{v\in V} d(v) - 4 + \sum_{f\in F} \ell(f) - 4$$

Now we redistribute charge to get a final charge ch^*, and show that $ch^*(x) \geq 0$ for all $x \in V \cup F$. This gives the following contradiction:

$$-8 = \sum_{x \in V \cup F} ch(x) = \sum_{x \in V \cup F} ch^*(x) \geq 0$$
Statement and Proof Outline

Theorem: Let G be a planar graph without 4-cycles or 5-cycles, and with maximum degree $\Delta \geq 32$. Then $\chi(G^2) \leq \Delta + 3$.

Proof: Let G be a minimal counterexample. Assign to each vertex and face an initial charge:

$$ch(v) = d(v) - 4 \quad \quad ch(f) = \ell(f) - 4$$

By Euler’s Formula ($|V| - |E| + |F| = 2$), the initial charges sum to

$$\sum_{v \in V} ch(v) + \sum_{f \in F} ch(f) = \sum_{v \in V} d(v) - 4 + \sum_{f \in F} \ell(f) - 4$$

$$= 2|E| - 4|V| + 2|E| - 4|F|$$
Theorem: Let G be a planar graph without 4-cycles or 5-cycles, and with maximum degree $\Delta \geq 32$. Then $\chi(G^2) \leq \Delta + 3$.

Proof: Let G be a minimal counterexample. Assign to each vertex and face an initial charge:

$$ch(v) = d(v) - 4 \quad \text{and} \quad ch(f) = \ell(f) - 4$$

By Euler’s Formula ($|V| - |E| + |F| = 2$), the initial charges sum to

$$\sum_{v \in V} ch(v) + \sum_{f \in F} ch(f) = \sum_{v \in V} d(v) - 4 + \sum_{f \in F} \ell(f) - 4$$

$$= 2|E| - 4|V| + 2|E| - 4|F| = -4(|V| - |E| + |F|)$$
Theorem: Let G be a planar graph without 4-cycles or 5-cycles, and with maximum degree $\Delta \geq 32$. Then $\chi(G^2) \leq \Delta + 3$.

Proof: Let G be a minimal counterexample. Assign to each vertex and face an initial charge:

\[ch(v) = d(v) - 4 \quad \text{and} \quad ch(f) = \ell(f) - 4 \]

By Euler's Formula ($|V| - |E| + |F| = 2$), the initial charges sum to

\[\sum_{v \in V} ch(v) + \sum_{f \in F} ch(f) = \sum_{v \in V} d(v) - 4 + \sum_{f \in F} \ell(f) - 4 \]

\[= 2|E| - 4|V| + 2|E| - 4|F| = -4(|V| - |E| + |F|) = -8. \]
Statement and Proof Outline

Theorem: Let G be a planar graph without 4-cycles or 5-cycles, and with maximum degree $\Delta \geq 32$. Then $\chi(G^2) \leq \Delta + 3$.

Proof: Let G be a minimal counterexample. Assign to each vertex and face an initial charge:

$$ch(v) = d(v) - 4 \quad \quad ch(f) = \ell(f) - 4$$

By Euler’s Formula ($|V| - |E| + |F| = 2$), the initial charges sum to

$$\sum_{v \in V} ch(v) + \sum_{f \in F} ch(f) = \sum_{v \in V} d(v) - 4 + \sum_{f \in F} \ell(f) - 4$$

$$= 2|E| - 4|V| + 2|E| - 4|F| = -4(|V| - |E| + |F|) = -8.$$

Now we redistribute charge to get a final charge ch^*, and show that $ch^*(x) \geq 0$ for all $x \in V \cup F$.

Bobby Jaeger, Dan Cranston

Coloring Squares of Planar Graphs with no 4- or 5-cycles
Theorem: Let G be a planar graph without 4-cycles or 5-cycles, and with maximum degree $\Delta \geq 32$. Then $\chi(G^2) \leq \Delta + 3$.

Proof: Let G be a minimal counterexample. Assign to each vertex and face an initial charge:

- $ch(v) = d(v) - 4$
- $ch(f) = \ell(f) - 4$

By Euler’s Formula ($|V| - |E| + |F| = 2$), the initial charges sum to

$$
\sum_{v \in V} ch(v) + \sum_{f \in F} ch(f) = \sum_{v \in V} d(v) - 4 + \sum_{f \in F} \ell(f) - 4
$$

$$
= 2|E| - 4|V| + 2|E| - 4|F| = -4(|V| - |E| + |F|) = -8.
$$

Now we redistribute charge to get a final charge ch^*, and show that $ch^*(x) \geq 0$ for all $x \in V \cup F$. This gives the following contradiction:

$$
-8 = \sum_{x \in V \cup F} ch(x) = \sum_{x \in V \cup F} ch^*(x) \geq 0
$$
Since G is a *minimal* counterexample, any proper subgraph of G can have its square colored using at most $\Delta + 3$ colors.
Since G is a \textit{minimal} counterexample, any proper subgraph of G can have its square colored using at most $\Delta + 3$ colors.

We use this to show that certain structures cannot appear in G.

\[\text{Basic Reducibility Lemma} \quad : \quad \text{A 1-vertex or a 2-vertex on a triangle whose neighbors' degrees sum to at most } \Delta + 4 \text{ is reducible.} \]
Reducibility

- Since G is a *minimal* counterexample, any proper subgraph of G can have its square colored using at most $\Delta + 3$ colors.
- We use this to show that certain structures cannot appear in G.
- **Basic Reducibility Lemma**: A 1-vertex or a 2-vertex on a triangle whose neighbors’ degrees sum to at most $\Delta + 4$ is reducible.
Since G is a *minimal* counterexample, any proper subgraph of G can have its square colored using at most $\Delta + 3$ colors.

We use this to show that certain structures cannot appear in G.

Basic Reducibility Lemma: A 1-vertex or a 2-vertex on a triangle whose neighbors’ degrees sum to at most $\Delta + 4$ is reducible.
Reducibility

- Since G is a \textit{minimal} counterexample, any proper subgraph of G can have its square colored using at most $\Delta + 3$ colors.
- We use this to show that certain structures cannot appear in G.
- \textbf{Basic Reducibility Lemma}: A 1-vertex or a 2-vertex on a triangle whose neighbors’ degrees sum to at most $\Delta + 4$ is reducible.

Hence the minimum degree of any vertex in G is 2, and if G contains a 2-vertex u on a triangle, then the sum of the degrees of the neighbors of u is at least $\Delta + 5$.
Let $N^2(u)$ denote the 2-neighborhood of u, i.e. the set of all vertices at distance at most 2 from vertex u. Not hard to see that $|N^2(u)| \leq \sum_{v \in N(u)} d(v)$.

Main Reducibility Lemma: Two adjacent vertices u and v such that $|N^2(u)| \leq \Delta + 3$ and $|N^2(v)| \leq \Delta + 2$ are reducible.

Example application: adjacent 2-vertices are reducible (each has a 2-neighborhood of size at most $\Delta + 2$). With these forbidden structures in mind, we now move on to the discharging phase.
Reducibility (cont.)

- Let $N^2(u)$ denote the 2-neighborhood of u, i.e. the set of all vertices at distance at most 2 from vertex u.
 - Not hard to see that $|N^2(u)| \leq \sum_{v \in N(u)} d(v)$.

Main Reducibility Lemma: Two adjacent vertices u and v such that $|N^2(u)| \leq \Delta + 3$ and $|N^2(v)| \leq \Delta + 2$ are reducible.

Example application: adjacent 2-vertices are reducible (each has a 2-neighborhood of size at most $\Delta + 2$).

With these forbidden structures in mind, we now move on to the discharging phase.
Reducibility (cont.)

- Let $N^2(u)$ denote the 2-neighborhood of u, i.e. the set of all vertices at distance at most 2 from vertex u.
 - Not hard to see that $|N^2(u)| \leq \sum_{v \in N(u)} d(v)$.

- **Main Reducibility Lemma**: Two adjacent vertices u and v such that $|N^2(u)| \leq \Delta + 3$ and $|N^2(v)| \leq \Delta + 2$ are reducible.
Let $N^2(u)$ denote the 2-neighborhood of u, i.e. the set of all vertices at distance at most 2 from vertex u.

Not hard to see that $|N^2(u)| \leq \sum_{v \in N(u)} d(v)$.

Main Reducibility Lemma: Two adjacent vertices u and v such that $|N^2(u)| \leq \Delta + 3$ and $|N^2(v)| \leq \Delta + 2$ are reducible.
Let $N^2(u)$ denote the 2-neighborhood of u, i.e. the set of all vertices at distance at most 2 from vertex u.

- Not hard to see that $|N^2(u)| \leq \sum_{v \in N(u)} d(v)$.

- **Main Reducibility Lemma**: Two adjacent vertices u and v such that $|N^2(u)| \leq \Delta + 3$ and $|N^2(v)| \leq \Delta + 2$ are reducible.
Reducibility (cont.)

- Let $N^2(u)$ denote the 2-neighborhood of u, i.e. the set of all vertices at distance at most 2 from vertex u.
 - Not hard to see that $|N^2(u)| \leq \sum_{v \in N(u)} d(v)$.

- Main Reducibility Lemma: Two adjacent vertices u and v such that $|N^2(u)| \leq \Delta + 3$ and $|N^2(v)| \leq \Delta + 2$ are reducible.
Let $N^2(u)$ denote the 2-neighborhood of u, i.e. the set of all vertices at distance at most 2 from vertex u.

- Not hard to see that $|N^2(u)| \leq \sum_{v \in N(u)} d(v)$.

Main Reducibility Lemma: Two adjacent vertices u and v such that $|N^2(u)| \leq \Delta + 3$ and $|N^2(v)| \leq \Delta + 2$ are reducible.

Example application: adjacent 2-vertices are reducible (each has a 2-neighborhood of size at most $\Delta + 2$).
Let $N^2(u)$ denote the 2-neighborhood of u, i.e. the set of all vertices at distance at most 2 from vertex u.

- Not hard to see that $|N^2(u)| \leq \sum_{v \in N(u)} d(v)$.

Main Reducibility Lemma: Two adjacent vertices u and v such that $|N^2(u)| \leq \Delta + 3$ and $|N^2(v)| \leq \Delta + 2$ are reducible.

Example application: adjacent 2-vertices are reducible (each has a 2-neighborhood of size at most $\Delta + 2$).

With these forbidden structures in mind, we now move on to the discharging phase.
Rule 1: Faces Give Charge

- Recall initial charges: $ch(f) = \ell(f) - 4$.

Note: after $R1$, all faces have $ch^*(f) \geq 0$.

Bobby Jaeger, Dan Cranston
Rule 1: Faces Give Charge

- Recall initial charges: \(\text{ch}(f) = \ell(f) - 4 \).
- 3-faces have charge \(-1\), while \(6^+\)-faces have charge at least 2.
Rule 1: Faces Give Charge

- Recall initial charges: \(ch(f) = \ell(f) - 4 \).
 - 3-faces have charge \(-1\), while 6+-faces have charge at least 2.
- R1: 6+-faces give charge \(\frac{1}{3} \) to each incident edge.

Note: after R1, all faces have \(ch^*(f) \geq 0 \).

Bobby Jaeger, Dan Cranston

Coloring Squares of Planar Graphs with no 4- or 5-cycles
Rule 1: Faces Give Charge

- Recall initial charges: \(ch(f) = \ell(f) - 4 \).
 - 3-faces have charge \(-1\), while 6\(^+\)-faces have charge at least 2.
- R1: 6\(^+\)-faces give charge \(\frac{1}{3} \) to each incident edge. If such an edge is incident to a 3-face \(f \), then the charge passes to \(f \).
Rule 1: Faces Give Charge

- Recall initial charges: \(ch(f) = \ell(f) - 4 \).
 - 3-faces have charge \(-1\), while 6\(^{+}\)-faces have charge at least \(2\).
- R1: 6\(^{+}\)-faces give charge \(\frac{1}{3}\) to each incident edge. If such an edge is incident to a 3-face \(f\), then the charge passes to \(f\). Otherwise, it splits between the edge’s 3\(^{-}\)-endpoints if it has any,
Rule 1: Faces Give Charge

Recall initial charges: $ch(f) = \ell(f) - 4$.
- 3-faces have charge -1, while 6^+-faces have charge at least 2.
- R1: 6^+-faces give charge $\frac{1}{3}$ to each incident edge. If such an edge is incident to a 3-face f, then the charge passes to f. Otherwise, it splits between the edge’s 3^--endpoints if it has any, or else splits between both endpoints if both have degree at least 4.
Rule 1: Faces Give Charge

- Recall initial charges: $ch(f) = ℓ(f) - 4$.
 - 3-faces have charge -1, while 6^+-faces have charge at least 2.
- R1: 6^+-faces give charge $\frac{1}{3}$ to each incident edge. If such an edge is incident to a 3-face f, then the charge passes to f. Otherwise, it splits between the edge’s 3$^-$-endpoints if it has any, or else splits between both endpoints if both have degree at least 4.

Note: after R1, all faces have $ch^*(f) \geq 0$.
Rule 2: High-Degree Vertices Give Charge

- Recall initial charges: \(ch(v) = d(v) - 4 \).
Rule 2: High-Degree Vertices Give Charge

- Recall initial charges: $ch(v) = d(v) - 4$.
 - 2- and 3-vertices have negative charge, 4-vertices have zero charge, and 5^+-vertices have positive charge.
Rule 2: High-Degree Vertices Give Charge

- Recall initial charges: \(ch(v) = d(v) - 4 \).
 - 2- and 3-vertices have negative charge, 4-vertices have zero charge, and 5\(^+\)-vertices have positive charge.
 - R2: 5\(^+\)-vertices split their excess initial charge evenly among their lower-degree neighbors.

\[
\begin{align*}
ch(v) &= d(v) - 4. \\
2-\text{ and 3-vertices have negative charge, 4-vertices have zero charge, and 5}^+\text{-vertices have positive charge.} \\
R2: \text{ 5}^+\text{-vertices split their excess initial charge evenly among their lower-degree neighbors.}
\end{align*}
\]
Rule 2: High-Degree Vertices Give Charge

- Recall initial charges: $ch(v) = d(v) - 4$.
 - 2- and 3-vertices have negative charge, 4-vertices have zero charge, and 5^+-vertices have positive charge.
- R2: 5^+-vertices split their excess initial charge evenly among their lower-degree neighbors.

\[
d(v_i) < 5 \text{ for } 1 \leq i \leq 5:
\]
Rule 2: High-Degree Vertices Give Charge

- Recall initial charges: $ch(v) = d(v) - 4$.
 - 2- and 3-vertices have negative charge, 4-vertices have zero charge, and 5^+-vertices have positive charge
 - R2: 5^+-vertices split their excess initial charge evenly among their lower-degree neighbors.

$$d(v_i) < 5 \text{ for } 1 \leq i \leq 5:$$

![Diagram showing vertex v1 and its neighbors v2, v3, v4, v5, with charges distributed evenly among neighbors]
Rule 2: High-Degree Vertices Give Charge

- Recall initial charges: $ch(v) = d(v) - 4$.
 - 2- and 3-vertices have negative charge, 4-vertices have zero charge, and 5^+-vertices have positive charge.
- R2: 5^+-vertices split their excess initial charge evenly among their lower-degree neighbors.

$d(v_1) \geq 5$:
Rule 2: High-Degree Vertices Give Charge

- Recall initial charges: \(ch(v) = d(v) - 4 \).
 - 2- and 3-vertices have negative charge, 4-vertices have zero charge, and 5\(^+\)-vertices have positive charge.
 - R2: 5\(^+\)-vertices split their excess initial charge evenly among their lower-degree neighbors.

\[
d(v_1) \geq 5:
\]

If \(v \) is a 5\(^+\)-vertex, then its excess initial charge is \(d(v) - 4 \). If all its neighbors have lower degree, then it gives them each \(d(v) - 4 \) charge.

As \(d(v) \to \infty \), the amount \(v \) gives to each neighbor approaches 1.
Rule 2: High-Degree Vertices Give Charge

- Recall initial charges: \(ch(v) = d(v) - 4 \).
 - 2- and 3-vertices have negative charge, 4-vertices have zero charge, and 5\(^+\)-vertices have positive charge.
 - R2: 5\(^+\)-vertices split their excess initial charge evenly among their lower-degree neighbors.

If \(v \) is a 5\(^+\)-vertex, then its excess initial charge is \(d(v) - 4 \). If all its neighbors have lower degree, then it gives them each \(\frac{d(v) - 4}{d(v)} \).
Rule 2: High-Degree Vertices Give Charge

- Recall initial charges: \(ch(v) = d(v) - 4 \).
 - 2- and 3-vertices have negative charge, 4-vertices have zero charge, and 5\(^+\)-vertices have positive charge.
 - R2: 5\(^+\)-vertices split their excess initial charge evenly among their lower-degree neighbors.

\[d(v_1) \geq 5: \]

- If \(v \) is a 5\(^+\)-vertex, then its excess initial charge is \(d(v) - 4 \). If all its neighbors have lower degree, then it gives them each \(\frac{d(v) - 4}{d(v)} \).
- As \(d(v) \to \infty \), the amount \(v \) gives to each neighbor approaches 1.
Rules 3 and 4

- **R3:** If a 4^+-vertex u is on a 3-face uvw, where w is either (i) a 2-vertex or (ii) a 3-vertex with a 2-neighbor, then u passes the charge c on to w.

![Diagram](image)
Rules 3 and 4

- **R3**: If a 4^+-vertex u is on a 3-face uvw, where w is either (i) a 2-vertex or (ii) a 3-vertex with a 2-neighbor, and u receives some charge c during R2 from v,

\begin{itemize}
 \item[(i)]
 \begin{align*}
 w & \quad v \\
 \quad u & \quad C
 \end{align*}
 \\
 \begin{itemize}
 \item[(ii)]
 \begin{align*}
 w & \quad v \\
 \quad u & \quad C
 \end{align*}
 \end{itemize}
\end{itemize}
Rules 3 and 4

- **R3:** If a 4^+-vertex u is on a 3-face uvw, where w is either (i) a 2-vertex or (ii) a 3-vertex with a 2-neighbor, and u receives some charge c during R2 from v, then u passes the charge c on to w.

![Diagram](image)

- **R4:** If a 3-vertex has excess (positive) charge after R1-R3, it splits this charge evenly among its neighbors with negative charge.
Rules 3 and 4

- **R3:** If a 4^+-vertex u is on a 3-face uvw, where w is either (i) a 2-vertex or (ii) a 3-vertex with a 2-neighbor, and u receives some charge c during R2 from v, then u passes the charge c on to w.

- **R4:** If a 3^+-vertex has excess (positive) charge after R1-R3, it splits this charge evenly among its neighbors with negative charge.
Recall: initial charges sum to \(-8\). To reach a contradiction, we need to show that all elements end with nonnegative final charge.
Recall: initial charges sum to -8. To reach a contradiction, we need to show that all elements end with nonnegative final charge.

We already saw that all faces have nonnegative charge after R1.
Recall: initial charges sum to -8. To reach a contradiction, we need to show that all elements end with nonnegative final charge.

- We already saw that all faces have nonnegative charge after R1.
- Each 4^+-vertex starts with nonnegative initial charge and never gives away more than its “positive balance”, thus ends with nonnegative final charge.
Recall: initial charges sum to -8. To reach a contradiction, we need to show that all elements end with nonnegative final charge.

We already saw that all faces have nonnegative charge after $R1$.

Each 4^+-vertex starts with nonnegative initial charge and never gives away more than its "positive balance", thus ends with nonnegative final charge.

The bulk of the work is therefore in analyzing the 2-vertices and 3-vertices.
3-vertices

- A 3-vertex u has initial charge $= 3 - 4 = -1$.

Bobby Jaeger, Dan Cranston

Coloring Squares of Planar Graphs with no 4- or 5-cycles
3-vertices

- A 3-vertex u has initial charge $= 3 - 4 = -1$.
- If u is not on a triangle, then all needed charge comes from incident edges.
3-vertices

- A 3-vertex u has initial charge $= 3 - 4 = -1$.
- If u is not on a triangle, then all needed charge comes from incident edges.

![Diagram of three vertices with charges labeled 1/6 each]
3-vertices

- A 3-vertex u has initial charge $= 3 - 4 = -1$.
- If u is not on a triangle, then all needed charge comes from incident edges.

If u is on a triangle, let v_1 and v_2 denote the neighbors on the triangle and w denote the neighbor off the triangle.
3-vertices

- A 3-vertex u has initial charge $= 3 - 4 = -1$.
- If u is not on a triangle, then all needed charge comes from incident edges.

If u is on a triangle, let v_1 and v_2 denote the neighbors on the triangle and w denote the neighbor off the triangle.

- If $d(w) \geq 6$, then u gets all needed charge from uw and w.
3-vertices

- A 3-vertex u has initial charge $= 3 - 4 = -1$.
- If u is not on a triangle, then all needed charge comes from incident edges.

If u is on a triangle, let v_1 and v_2 denote the neighbors on the triangle and w denote the neighbor off the triangle.

- If $d(w) \geq 6$, then u gets all needed charge from uw and w.
- If $d(v_1) \geq 12$, then u gets all needed charge from uw and v_1.
3-vertices

- A 3-vertex u has initial charge $= 3 - 4 = -1$.
- If u is not on a triangle, then all needed charge comes from incident edges.

If u is on a triangle, let v_1 and v_2 denote the neighbors on the triangle and w denote the neighbor off the triangle.

- If $d(w) \geq 6$, then u gets all needed charge from uw and w.
- If $d(v_1) \geq 12$, then u gets all needed charge from uw and v_1.
- (Similarly, if $d(v_1) + d(v_2) \geq 16$, then u gets enough charge).
3-vertices

- A 3-vertex \(u \) has initial charge \(= 3 - 4 = -1 \).
- If \(u \) is not on a triangle, then all needed charge comes from incident edges.

\[\begin{array}{c}
\frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\
\frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\
\end{array} \]

- If \(u \) is on a triangle, let \(v_1 \) and \(v_2 \) denote the neighbors on the triangle and \(w \) denote the neighbor off the triangle.
 - If \(d(w) \geq 6 \), then \(u \) gets all needed charge from \(uw \) and \(w \).
 - If \(d(v_1) \geq 12 \), then \(u \) gets all needed charge from \(uw \) and \(v_1 \).
 - (Similarly, if \(d(v_1) + d(v_2) \geq 16 \), then \(u \) gets enough charge).
- “Interesting” cases are when \(d(w) \) and \(d(v_1) + d(v_2) \) are small.
2-vertices

- A 2-vertex u has initial charge $2 - 4 = -2$.

Bobby Jaeger, Dan Cranston
Coloring Squares of Planar Graphs with no 4- or 5-cycles
2-vertices

- A 2-vertex u has initial charge $2 - 4 = -2$.
- First, if u is on a triangle, then the degree sums of its two neighbors must be at least $\Delta + 5$.
2-vertices

- A 2-vertex u has initial charge $2 - 4 = -2$.
- First, if u is on a triangle, then the degree sums of its two neighbors must be at least $\Delta + 5$.

![Diagram of a 2-vertex u on a triangle with degree sums of its neighbors at least $\Delta + 5$.]
2-vertices

- A 2-vertex u has initial charge $2 - 4 = -2$.
- First, if u is on a triangle, then the degree sums of its two neighbors must be at least $\Delta + 5$.

All needed charge comes via R2 and R3.
2-vertices

- A 2-vertex u has initial charge $2 - 4 = -2$.
- First, if u is on a triangle, then the degree sums of its two neighbors must be at least $\Delta + 5$.

All needed charge comes via R2 and R3. We need $2 \left(\frac{\Delta - 4}{\Delta} \right) + \frac{1}{4} \geq 2$, which is true when $\Delta \geq 32$.
A 2-vertex u has initial charge $2 - 4 = -2$.

First, if u is on a triangle, then the degree sums of its two neighbors must be at least $\Delta + 5$.

All needed charge comes via R2 and R3. We need $2 \left(\frac{\Delta - 4}{\Delta} \right) + \frac{1}{4} \geq 2$, which is true when $\Delta \geq 32$.

Otherwise, u is not on a triangle, so it gets charge through its edges via R1.
2-vertices

- A 2-vertex u has initial charge $2 - 4 = -2$.
- First, if u is on a triangle, then the degree sums of its two neighbors must be at least $\Delta + 5$.

![Diagram showing a triangle and an edge](image)

All needed charge comes via R2 and R3. We need $2 \left(\frac{\Delta - 4}{\Delta} \right) + \frac{1}{4} \geq 2$, which is true when $\Delta \geq 32$.

- Otherwise, u is not on a triangle, so it gets charge through its edges via R1. We show that u gets charge 1 from each side.
2-vertices

- A 2-vertex u has initial charge $2 - 4 = -2$.
- First, if u is on a triangle, then the degree sums of its two neighbors must be at least $\Delta + 5$.

\[
\frac{\Delta - 4}{\Delta} \geq \frac{1}{4} \geq \frac{2}{4}, \quad \text{which is true when } \Delta \geq 32.
\]

- Otherwise, u is not on a triangle, so it gets charge through its edges via R1. We show that u gets charge 1 from each side.

- “Interesting” cases are when a neighbor of u has degree 3, 4, or 5.
2-vertices

- A 2-vertex \(u \) has initial charge \(2 - 4 = -2 \).
- First, if \(u \) is on a triangle, then the degree sums of its two neighbors must be at least \(\Delta + 5 \).

All needed charge comes via R2 and R3. We need
\[
2 \left(\frac{\Delta - 4}{\Delta} \right) + \frac{1}{4} \geq 2,
\]
which is true when \(\Delta \geq 32 \).

- Otherwise, \(u \) is not on a triangle, so it gets charge through its edges via R1. We show that \(u \) gets charge 1 from each side.
- “Interesting” cases are when a neighbor of \(u \) has degree 3, 4, or 5.
- So all 3-vertices and 2-vertices end with nonnegative final charge, and everything works!
Summary

- Coloring the square of a planar graph G requires a number of colors linear in Δ, the maximum degree of G.
Summary

- Coloring the square of a planar graph G requires a number of colors linear in Δ, the maximum degree of G.
- For planar graphs without 4-cycles or 5-cycles, an upper bound of $\Delta + 5$ has been proven whenever $\Delta \geq 9$.

We use discharging: assuming a minimal counterexample G, the initial charges sum to -8. After moving charge around, the final charges are all nonnegative, a contradiction! Hence no counterexample can exist.
Coloring the square of a planar graph G requires a number of colors linear in Δ, the maximum degree of G.

For planar graphs without 4-cycles or 5-cycles, an upper bound of $\Delta + 5$ has been proven whenever $\Delta \geq 9$.

We have improved this upper bound to $\Delta + 3$ whenever $\Delta \geq 32$.
Summary

- Coloring the square of a planar graph G requires a number of colors linear in Δ, the maximum degree of G.
- For planar graphs without 4-cycles or 5-cycles, an upper bound of $\Delta + 5$ has been proven whenever $\Delta \geq 9$.
- We have improved this upper bound to $\Delta + 3$ whenever $\Delta \geq 32$.
 - Almost best possible, since graphs are known fitting these criteria requiring $\Delta + 2$ colors (for arbitrarily high Δ).
Summary

- Coloring the square of a planar graph G requires a number of colors linear in Δ, the maximum degree of G.
- For planar graphs without 4-cycles or 5-cycles, an upper bound of $\Delta + 5$ has been proven whenever $\Delta \geq 9$.
- We have improved this upper bound to $\Delta + 3$ whenever $\Delta \geq 32$.
 - Almost best possible, since graphs are known fitting these criteria requiring $\Delta + 2$ colors (for arbitrarily high Δ).
- We use discharging: assuming a minimal counterexample G, the initial charges sum to -8.
Summary

- Coloring the square of a planar graph G requires a number of colors linear in Δ, the maximum degree of G.

- For planar graphs without 4-cycles or 5-cycles, an upper bound of $\Delta + 5$ has been proven whenever $\Delta \geq 9$.

- We have improved this upper bound to $\Delta + 3$ whenever $\Delta \geq 32$.
 - Almost best possible, since graphs are known fitting these criteria requiring $\Delta + 2$ colors (for arbitrarily high Δ).

- We use discharging: assuming a minimal counterexample G, the initial charges sum to -8. After moving charge around, the final charges are all nonnegative, a contradiction!
Summary

- Coloring the square of a planar graph G requires a number of colors linear in Δ, the maximum degree of G.
- For planar graphs without 4-cycles or 5-cycles, an upper bound of $\Delta + 5$ has been proven whenever $\Delta \geq 9$.
- We have improved this upper bound to $\Delta + 3$ whenever $\Delta \geq 32$.
 - Almost best possible, since graphs are known fitting these criteria requiring $\Delta + 2$ colors (for arbitrarily high Δ).
- We use discharging: assuming a minimal counterexample G, the initial charges sum to -8. After moving charge around, the final charges are all nonnegative, a contradiction! Hence no counterexample can exist.
Coloring the square of a planar graph G requires a number of colors linear in Δ, the maximum degree of G.

For planar graphs without 4-cycles or 5-cycles, an upper bound of $\Delta + 5$ has been proven whenever $\Delta \geq 9$.

We have improved this upper bound to $\Delta + 3$ whenever $\Delta \geq 32$.

Almost best possible, since graphs are known fitting these criteria requiring $\Delta + 2$ colors (for arbitrarily high Δ).

We use discharging: assuming a minimal counterexample G, the initial charges sum to -8. After moving charge around, the final charges are all nonnegative, a contradiction! Hence no counterexample can exist.

THANK YOU