Incidence Numbers and Hard Erdős Problems in Discrete Geometry

J. Solymosi

May 16, 2015 / 28th Cumberland Conference on Combinatorics, Graph Theory & Computing
About 20 years ago Laci Székely submitted a paper titled

Crossing Numbers and Hard Erdős Problems in Discrete Geometry

The method Laci introduced in that seminal paper had a huge impact on discrete geometry and it became a standard tool.

In this talk I will mention problems which were asked by Laci or which are related to his work.
Székely’s proof of the Szemerédi-Trotter theorem used the bound on crossing numbers.

Theorem (Szemerédi-Trotter)

The number of incidences between n points and m lines in \mathbb{R}^2 is $O(n^{2/3}m^{2/3} + n + m)$.

It was expected that similar bound holds over \mathbb{C}^2. But \mathbb{C}^2 has a very different geometry than \mathbb{R}^2.
For complex points and lines a Szemerédi-Trotter type bound was proved by Tóth and later by Zahl. For "pseudolines" even in higher complex dimensions a similar bound holds (S.-Tao). Still, it would be interesting to find a Crossing Lemma type bound.

Theorem (Ajtai, Chvátal, Newborn, and Szemerédi)

For an undirected simple graph G with n vertices and e edges such that $e > 7n$ then

$$cr(G) \geq \frac{e^3}{29n^2}$$
In \mathbb{R}^2 the key is that if more than $3n - 6$ point-pairs are connected by line segments then two will intersect.

What is an interval in \mathbb{C}^2? There are ways to define it, here is one which would be useful. Any two points a and b define a unique line. It is a plane (2-dimensional affine subspace) in $\mathbb{R}^4 \sim \mathbb{C}^2$. One can consider the disk on this plane with a and b being the antipodal points on the boundary of the disk.

$$l(a, b) = \left\{ \frac{a + b}{2} + z \left| z \right| \leq \left| \frac{a - b}{2} \right| \right\}$$
Crossings in \mathbb{C}^2 (cont’d)

$l(a, b) = \left\{ \frac{a + b}{2} + z \mid |z| \leq \left| \frac{a - b}{2} \right| \right\}$

Conjecture

There is a constant $C \in \mathbb{R}$ such that if more than Cn point-pairs are connected by line segments in \mathbb{C}^2 then two of the segments will intersect.
Crossings in \mathbb{C}^2 (cont’d)

Conjecture

If K_8 is embedded by line segments into \mathbb{C}^2 then two of the segments will intersect.

Here is a K_7 embedded into \mathbb{C}^2 without crossing. (S. Leppänen)

\[
\begin{align*}
z_1 &= (0.4358 - 0.3796i, 0.5726 + 0.3896i) \\
z_2 &= (-0.3382 + 0.0719i, -0.1316 + 0.3220i) \\
z_3 &= (0.6391 + 0.0141i, 0.8889 - 0.3292i) \\
z_4 &= (0.6302 - 0.5513i, 0.2813 - 0.8285i) \\
z_5 &= (0.9731 - 1.3291i, 2.3615 + 0.4571i) \\
z_6 &= (1.7105 - 0.7780i, -1.4009 - 0.8982i) \\
z_7 &= (0.0099 - 0.9417i, 1.3350 - 0.9040i)
\end{align*}
\]
Problem of de Caen and Székely: How many triangles are there in a point-line arrangement?

Theorem (Szemerédi-Trotter)

The number of incidences between n points and m lines in \mathbb{R}^2 *is* $O\left(\frac{n^2}{3} \cdot \frac{m^2}{3} + n + m\right)$.

There are SOME triangles

Theorem (S.)

For any $c > 0$ *there is an* n_0 *such that if* $n > n_0$ *and the number of incidences between* n *points and* n *lines is at least* $cn^{4/3}$ *then the arrangement contains triangles.*
Questions.

- Is there a simple proof for the existence of triangles? (I used Szemerédi’s Regularity Lemma)

- What is the number of triangles under the conditions of the previous theorem? I can show $\Omega(n^{5/3})$ but it might be $\Omega(n^2)$.

- Maybe the following is true: If m lines and n points determine $cn^{2/3}m^{2/3}$ incidences then the arrangement contains $\Omega(nm)$ triangles. (Reverse de Caen-Székely)
Triple grids, another problem of Székely Solymosi

Solymosi

Incidences
Using some heavy tools Elekes, Simonovits, and Szabó proved a subquadratic upper bound.

Theorem (E-S-Sz)

The number of triple points is $O(n^{1.99})$

A simplified method gave a better bound

Theorem (Raz, Sharir, S.)

The number of triple points is $O(n^{11/6})$

Maybe the truth is $O(n^{1+\epsilon})$.
There is a more general algebraic framework behind the solutions. If a low degree algebraic surface has a large intersection with a Cartesian product then it has a special additive or multiplicative structure. Improving earlier result of Elekes and Rónyai we proved the following.
Algebraic Surface

Solymosi

Incidences
Theorem (Raz, Sharir, S.)

For every constant-degree bivariate real polynomial \(f \), either
\[
|f(A, B)| = O(n^{4/3}), \quad \text{for every pair of finite sets } A, B \subset \mathbb{R}, \text{ with } |A| = |B| = n, \quad \text{or else } f \text{ must be of one of the special forms}
\]
\[
f(u, v) = h(\phi((u) + \rho(v)), \quad \text{or } f(u, v) = h(\phi(u)\rho(v)), \quad \text{for some univariate polynomials } \phi, \rho, h \text{ over } \mathbb{R}.
\]

This general bound and its extensions have many applications. It is not known whether \(O(n^{4/3}) \) could be replaced with \(O(n^{1+\varepsilon}) \) in the theorem above.
More algebra ...

Definition

Given an arrangement of lines in \mathbb{R}^3. A point which is a crossing point of three non co-planar lines is called a *joint*.

Theorem (Guth and Katz)

The number of joints determined by n^2 lines is $O(n^3)$.

This was the first in a sequence of results which define modern Discrete Geometry. Let us see the proof.
Claim: There is an algebraic surface \(f \), of degree \(d \leq 3n \) which contains all \(n^2 \) lines.

\[
f(x, y, z) = \sum_{0 \leq i+j+k \leq d} a_{ijk} x^i y^j z^k
\]

\[
\ell = \{(t, at + b, ct + d) | t \in \mathbb{R}\}
\]

The surface contains the line if after the substitution
\(x = t, y = at + b, z = ct + d \) the polynomial (in \(t \)) is everywhere zero, so the coefficients are zero. We have \(n^2 d \) linear equations for the \(\binom{d+3}{3} \) variables. If

\[
n^2 d < \binom{d+3}{3}
\]

then there is a solution.
We will show that there is a line with a few (< 3n) joints only. Let us choose the minimum degree surface which contains all lines. Note that \(\nabla f(x, y, z) = 0 \) whenever \(x, y, z \) is a joint. By Bezout’s theorem every line with at least \(d \leq 3n \) joints on it is contained by the degree \(d - 1 \) surface

\[
\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial z} = 0.
\]

If all lines had \(3n \) or more joints then all lines would lie in a smaller degree surface which would be a contradiction.
Theorem

Lines in \mathbb{R}^3 If n^2 lines have more than n^3 crossings then at least n of them are contained by a doubly ruled surface.
Doubly Ruled

A doubly ruled elliptic hyperboloid.

(1) Cylinder
(2) Draw off the lines slightly shifted
(3) A hyperboloid is formed

Fig. 1 Hyperboloid
A doubly ruled hyperbolic paraboloid.
Theorem (Guth-Zahl, bipartite version)

Let $\mathcal{C}, \mathcal{C}'$ be constructible sets of curves. Let $\mathcal{L} \subset \mathcal{C}$, $\mathcal{L}' \subset \mathcal{C}'$ be finite sets of curves, each of cardinality at most n. Then at least one of the following must hold:

- The number of two–rich points is $O(n^{3/2})$, where the implicit constant depends only on \mathcal{C} and \mathcal{C}'.
- There is an irreducible surface $Z \subset \mathbb{C}^3$ that is doubly ruled by curves from \mathcal{C} and \mathcal{C}'.
In this talk we sketched some ideas and proofs. For more details check the papers below.