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Abstract

We study sparse approximation by greedy algorithms. Our con-
tribution is two-fold. First, we prove exact recovery with high prob-
ability of random K-sparse signals within [K(1 + €)] iterations of
the Orthogonal Matching Pursuit (OMP). This result shows that in a
probabilistic sense the OMP is almost optimal for exact recovery. Sec-
ond, we prove the Lebesgue-type inequalities for the Weak Chebyshev
Greedy Algorithm, a generalization of the Weak Orthogonal Match-
ing Pursuit to the case of a Banach space. The main novelty of these
results is a Banach space setting instead of a Hilbert space setting.
However, even in the case of a Hilbert space our results add some
new elements to known results on the Lebesque-type inequalities for
the RIP dictionaries. Our technique is a development of the recent
technique created by Zhang.

1 Introduction

This paper deals with sparse approximation. Driven by applications in bi-
ology, medicine, and engineering approximation problems are formulated in
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very high dimensions, which bring to the fore new phenomena. One aspect
of the high-dimensional context is a focus on sparse signals (functions). The
main motivation for the study of sparse signals is that many real world sig-
nals can be well approximated by sparse ones. A very important step in
solving multivariate problems with large dimension occurred during last 20
years. Researchers began to use sparse representations as a way to model
the corresponding function classes. This approach automatically implies a
need for nonlinear approximation, in particular, for greedy approximation.
We give a brief description of a sparse approximation problem. In a general
setting we are working in a Banach space X with a redundant system of
elements D (dictionary D). There is a solid justification of importance of a
Banach space setting in numerical analysis in general and in sparse approx-
imation in particular (see, for instance, [10], Preface, and [5]). An element
(function, signal) f € X is said to be K-sparse with respect to D if it has a
representation f = Zfil Zigi, gi € D, 1 =1,..., K. The set of all K-sparse
elements is denoted by Xk (D). For a given element f; we introduce the error
of best m-term approximation

Om(fo, D) := feiznf(p) Il fo— fll

Here are two fundamental problems of sparse approximation.

P1. Exact recovery. Suppose we know that fy € ¥ (D). How can we
recover it?

P2. Approximate recovery. How to design a practical algorithm that
builds m-term approximations comparable to best m-term approximations?

It is known that in both of the above problems greedy-type algorithms
play a fundamental role. We discuss one of them here. There are two special
cases of the above general setting of the sparse approximation problem.

(I). Instead of a Banach space X we consider a Hilbert space H. Approx-
imation is still with respect to a redundant dictionary D.

(IT). We approximate in a Banach space X with respect to a basis ¥
instead of a redundant dictionary D.

This section discusses setting (I) and the corresponding generalizations
to the Banach space setting. Section 4 addresses setting (IT). We begin our
discussion with the Orthogonal Greedy Algorithm (OGA) in a Hilbert space.
The Orthogonal Greedy Algorithm is called the Orthogonal Matching Pur-
suit (OMP) in signal processing. We will use the name Orthogonal Matching
Pursuit for this algorithm in this paper. It is natural to compare perfor-



mance of the OMP with the best m-term approximation with regard to a
dictionary D. We recall some notations and definitions from the theory of
greedy algorithms. Let H be a real Hilbert space with an inner product (-, -)
and the norm ||z := (z,z)!/2. We say a set D of functions (elements) from
H is a dictionary if each g € D has a unit norm (||g|| = 1) and the closure of
spanD is H. Let a sequence 7 = {t;}72,, 0 < t; <1, be given. The following
greedy algorithm was defined in [6] under the name Weak Orthogonal Greedy
Algorithm (WOGA).

Weak Orthogonal Matching Pursuit (WOMP). Let f, be given.
Then for each m > 1 we inductively define:

(1) om € D is any element satisfying

|<fm—17 Spm>| 2 tm sup |<fm—17g>|
geD

(2) Let H,, := span(y1,...,¢m) and let Py _(-) denote an operator of
orthogonal projection onto H,,. Define

Gm(fo, D) := Pu,,(fo)-

(3) Define the residual after mth iteration of the algorithm

fm = fO - Gm(f07D)

Inthecaset, =1,k =1,2,..., WOMP is called the Orthogonal Matching
Pursuit (OMP). In this paper we only consider the case t, =t, k =1,2,...,
t € (0,1].

The theory of the WOMP is well developed (see [10]). In first results
on performance of the WOMP in problems P1 and P2 researchers imposed
the incoherence assumption on a dictionary D. The reader can find detailed
discussion of these results in [10], Section 2.6 and [4]. Recently, exact recov-
ery results and Lebesgue-type inequalities for the WOMP under assumption
that D satisfies Restricted Isometry Property (RIP) introduced in compressed
sensing theory (see Definition 2.1 below) have been proved (see [12], [3], [11]).
A breakthrough result in this direction was obtained by Zhang [12]. In par-
ticular, he proved that if 625F(D) < 1/3 then the OMP recovers exactly all
K-sparse signals within 30K iterations. In other words, f3ox = 0. It is in-
teresting and difficult problem to improve the constant 30. There are several
papers devoted to this problem (see [3] and [11]). In this paper we develop
Zhang’s technique in two directions: (1) to obtain exact recovery with high
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probability of random K-sparse signals within [K (1 + €)] iterations of the
OMP and (2) to obtain recovery results and the Lebesgue-type inequalities
in the Banach space setting.

In Section 2 we prove exact recovery results under RIP conditions on a
dictionary combined with assumptions on the sparse signal to be recovered
(see Theorem 2.1). We prove that the corresponding assumptions on a sparse
signal are satisfied with high probability if it is a random signal. In particular,
we prove the following theorem.

Theorem 1.1. For any € > 0 there exist 0 = 6(e) > 0 and Ky = Ky(¢) such
that for any dictionary D, %P (D) < 6, K > K, the following statement
holds. Let fy € Xk (D) and its nonzero coefficients are uniformly distributed
on [—1,1] independent random variables. Then frxaye) = 0 with probability
greater than 1 — exp(—C/(€)K).

This theorem shows that in a probabilistic sense the OMP is almost op-
timal for exact recovery.

Sections 3 is devoted to the Banach space setting. Let X be a Banach
space with norm ||-|| := || - ||x. As in the case of Hilbert spaces we say that a
set of elements (functions) D from X is a dictionary if each g € D has norm
one (||g|| = 1), and the closure of spanD is X. For a nonzero element g € X
we let F, denote a norming (peak) functional for ¢:

1]

x =1, Fy(g9) = llgllx-

The existence of such a functional is guaranteed by the Hahn-Banach theo-
rem.

Let 7 := {tx}2, be a given weakness sequence of nonnegative num-
bers t, < 1, k =1,.... We define the Weak Chebyshev Greedy Algorithm
(WCGA) (see [7]) as a generalization for Banach spaces of the Weak Orthog-
onal Matching Pursuit. We study in detail the WCGA in this paper.

Weak Chebyshev Greedy Algorithm (WCGA). Let f, be given.
Then for each m > 1 we have the following inductive definition.

(1) @ = @& € D is any element satisfying

| Ffy ()] 2t sup [Fy,, ., (9)].
g€eD

(2) Define
®,, = @, = span{p; }iL,,
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and define G, := G to be the best approximant to fy from ®,,.

(3) Let

Jo =107 = fo— Gm.

In Section 3 we prove the Lebesgue-type inequalities for the WCGA.
A very important advantage of the WCGA is its convergence and rate of
convergence properties. The WCGA is well defined for all m. Moreover, it
is known (see [7] and [10]) that the WCGA with 7 = {t} converges for all f
in all uniformly smooth Banach spaces with respect to any dictionary. That
is, when X is a real Banach space and the modulus of smoothness of X is
defined as follows

1
p(u) =5  sup [z +uyl + ||z —uyl| - 2|,
zys ]|z =lyll=1

then the uniformly smooth Banach space is the one with p(u)/u — 0 when
u— 0.

For notational convenience we consider here a countable dictionary D =
{g:}32,. For a given fy, let the sparse element (signal)

f=r= Z ;g
ieT
be such that || fo — f¢]| < € and |T| = K. For A C T denote
fai= o= v
i€A
We use the following two assumptions.

Al. Nikol’skii-type inequality. The sparse element f = . .. ;g
satisfies Nikol’skii-type ¢; X inequality with parameter r if

Yo lwl SCUAI|fal, ACT, r>1/2
1€A

A2. Incoherence property. The sparse element f = > ., x;g; has
incoherence property with parameters D and U if for any A C T and any A,
such that ANA =0 and |A| + |A|] < D, we have for any {¢;}

1fa =Y cigill = U fall

i€EA

The main result of Section 3 is the following.
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Theorem 1.2. Let X be a Banach space with p(u) < ~yu?. Suppose K -sparse
1€ satisfies A1, A2 and || fo — f°|| < €. Then the WCGA with weakness
parameter t applied to fy provides

| fewrenzmunre || < Ce  for K+ C(t,y,C)U*In(U +1)K*" < D
with an absolute constant C'.

Theorem 1.2 provides a corollary for Hilbert spaces that gives sufficient
conditions somewhat weaker than the known RIP conditions on D for the
Lebesgue-type inequality to hold. We formulate it as a theorem.

Theorem 1.3. Let X be a Hilbert space. Suppose K -sparse f€ satisfies A2
and ||fo — f€|| < €. Then the WOMP with weakness parameter t applied to
fo provides

| fownxll < Ce for K +Ct,U)K <D

with an absolute constant C'.
Theorem 1.3 implies the following corollary.

Corollary 1.1. Let X be a Hilbert space. Suppose any K-sparse f satisfies
A2. Then the WOMP with weakness parameter t applied to fo provides

HfC(t,U)KH S CO’K<f0,D> fO’f’ K + C(t, U)K S D
with an absolute constant C'.

We show in Sections 3 that the RIP condition with parameters D and ¢
implies the (D, D) unconditionality with U = (1+6)/2(1—6§)~'/2. Therefore,
Corollary 1.1 reads as follows in this case.

Corollary 1.2. Let X be a Hilbert space. Suppose D satisfies RIP condi-
tion with parameters D and 6. Then the WOMP with weakness parameter t
applied to fo provides

| fewokll < Cok(fo,D) for K+ C(t,0)K <D

with an absolute constant C'.



We emphasize that in Theorem 1.2 we impose our conditions on an in-
dividual function f¢. It may happen that the dictionary does not satisfy
assumptions of ¢; X inequality and (K, D)-unconditionality (see Section 3)
but the given fy can be approximated by f¢ which does satisfy assumptions
A1l and A2. Even in the case of a Hilbert space our approach adds some-
thing new to the study based on the RIP. First of all, Theorem 1.3 shows
that it is sufficient to impose assumption A2 on an individual f€ in order
to obtain exact recovery and the Lebesgue-type inequality results. Second,
Corollary 1.1 shows that the condition A2, which is weaker than the RIP
condition, is sufficient for exact recovery and the Lebesgue-type inequality
results. Third, Corollary 1.2 shows that even if we impose our assumptions
in terms of RIP we do not need to assume that 6 < dyg. In fact, the result
works for all 6 < 1 with parameters depending on 9.

2 Almost optimality of the OMP

We prove Theorem 1.1 in this section. For the readers convenience we use
notations which are standard in signal processing. Let D = {¢;}, be a
dictionary in R, M < N. By & denote an M x N matrix, consisting of
elements of D (¢; € RM is the i-th column of ®). We say that x € RY is
S-sparse if x has at most S nonzero coordinates.

Definition 2.1. A matriz ® satisfies RIP(S,§) if the inequality
(1= 9)x[* < [|2x[* < (1 + 9)l|x]* (2.1)

holds for all S-sparse x € RY. The minimum of all constants &, satisfying
(2.1), is called the isometric constant §5(®) = d5(D) = 5P (D).

In this section we study the OMP and use the “compressed sensing no-
tation” for the residual of the OMP. Set

r'" = f,, m>0.

Consider the set
Q={1,...,N}.

Since fo € Yk (D), there exists an x = (21,9, ..., zyN), suppx =T, T C Q,
|T'| = K such that
r’ = f, = dx.
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Denote by T™ the set of indices of ¢; picked by the OMP after m iterations.
According to the definition of the OMP for every m > 0 we choose x™ € R,
satisfying the following relations

suppx” C T™, |T™| = m, while r™ # 0, (2.2)
Gn(f, D) = dx™,
r'" = dx — dx™. (2.3)
Let N(x,v) be the minimal integer such that

|xall* > v, forall A C T, |A| > N(x,v) + 1. (2.4)

Theorem 2.1. There ezists an absolute constant C such that for any 6, 0 <
§ < 0.001, an integer K > Ko = Ko(9), and a dictionary D, 538 (D) < § the
following statement holds. The OMP recovers ezactly every K-sparse signal x
within K + 6N (x, 6(51/2K) iterations, in other words, r TON(Co'2K) —

Here is a direct corollary of Theorem 2.1.

Corollary 2.1. Let K-sparse x be such that |x;| = 1,1 € T, |T| = K.
Then under assumptions of Theorem 2.1 the OMP recovers x ezactly within
(1+6C6Y2)K iterations.

Proof. Set
m.=T\17m.
We fix
a:= o2 (2.5)
Consider m € Z, such that
7™+ [aK] =m+ [aK] < K. (2.6)

Assume that K > Ky = Ky(a) > 1/a. Let z™ be the maximal number,
satisfying the following inequality

{i e T™ x| > 2™} > [aK], {i €™ x| <2} > I — [aK]. (2.7)

In other words 2™ is the [aK]th largest element out of {|x;|}ierm. We use
the following lemma.



Lemma 2.1. Under (2.6) the following inequality is valid:
™12 = ™ H* > (2)*(1 = Cha).
Proof. According to (2.7), we can choose sets
recrm, I = [aK]

and
m.=r\ry

with the following property

min |z;| > 2™ > max |z;|.
IS ielrm

Consider w € RY such that

Wrnrmure = Xrarmure,  Wo\rnrmorn) = 0.

We use several well-known properties of the OMP:

[l [[* = ™ H[* > sup(r™, 6)?,
¢€D

" P
sup ™, ¢y = W0l g
$€D Hqu

(r™, du) =0, if suppu C T™.
In particular
(r™, ox™) = 0.

Using (2.13) for u = wq\rm, We can estimate

‘Sup<rm ¢>| > |<I‘m,CDWQ\TM>| (2;4) |<rm,q)w>|
o T Twaeli  waell

@15 [, @(w —x"))| |, B(w —2™))|

Iwarrrlle 7 Jlwaye |6 [waoyrm

Applying (2.8) and (2.11), we obtain from the above inequality

| sup(r™, ¢)| >

(e, (w —2™))| |, S(w —a™))|

6€D (TN 2wyl — (ak)2 [wayrm |2

9
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We estimate

e = e -

x2S

= (1- )IIerIIQ—

(1 =0)flx —x"” > (1 = §)[l(x = x")pm|?
(1= 6)Ixrmurm|?
10),(2.8)

= (1= 8)(lxrp[* + [xrn ) HE = (e + e ),

and

(W —x)]

(2.11 RIP
2 L o |2 < (1 4 6) xpm |2

Combining two last inequalities, we obtain, for sufficiently large Ky = Ky(a) =

Ko(e),

™[ — (| (w

—x)|I*

> (1= 8)(z"[aK] — 28]xen |
1= 8 aK] — 28(zm T
Y18 aK] - 28K
> (1 20)(z")(aK) — 28(="VK

26
= (YaK((1-20) - 2
(225) (z™)2aK (1 — 4a). (2.17)

Following the technique from [11] we have

5 ©
v IV I\/% Il le

% @(w — x™) |2+ ™[> — | ®(w — x™) — ||
it — )3+ () — o 0|
(Ie(w —x")[3(=")?ak (1 = 4a))"”

|®(wW — x™)[|22™ (aK (1 — 4a))"/?

(1 - 0)?|lw —x™ | =" (aK (1 — 4a))"*

|lw —x™||z™ (aK)1/2(1 —ca)
(2.2

1w — X™) g [z (@) Y2(1 = cya) 2
||WQ\Tm||Zm(aK)1/2(1 — ca). (2.18)

10



Substituting (2.18) in (2.16) and (2.12), we finally get

m2 2 (1™, o(w —x™))? _[[woyrn [*(z")*aK(1 — c1a)®
aK|lwor=[3 aK|[wa\r |13
> (2™)*(1 - Cia).

x

]

We continue to prove Theorem 2.1. Without loss of generality we may
assume that 7' = {1,..., K} and that the sequence {|z;|} X, decreases. Then
using the inequality |7"N7T™| < m and the definition (2.7), we have

2" 2 Tmpar)| 2 [T 1arq]-
Applying Lemma 2.1, we have for m > 1, m + [aK] < K,
[ HE = (e > (2"~ Cra) 2 @ g (1 = Cha). (2.19)

First we bound ||[r®|| from above

K

[ ||r°||2—Z(||rm‘1||2—||r’"||2)
m=1
K
(rf=2x) dxll? — m—1)12 _ ||m||2
= flex® = (e 1P = (e
m=1
RIP K—[aK]
< (1+49) Zx - Z (™17 = [le™]1%)
m=1
K—[aK]
(2.19)
< (1+49) Zx - Z T ) (1 = Cra)
K
< (1+5)Zx3— > 21— Cha)
=1 i=14+[aK]
[aK]
TN IR I
|z4|<1

< 6+ Cla)K + [aK] < KCsa 2 K2, (2.20)

11



Then using RIP, we can estimate ||r®|| from below
I P> @=0) Y (2.21)
i€eT\TK

Set

Combining this definition with (2.20) and (2.21), we obtain

S 2 < OK

i€T\TK
Thus, using (2.4), we conclude that
T\ TX| < N(x,CK§'?). (2.22)
It is known that (see Lemma 1.2 from [1] and Lemma 1 from [2])
b25(P) < 365(P).
Then the condition § < 0.001 implies that
910k (P) < 016 (P) < 270 (P) < 276 < 0.03. (2.23)

Now we can apply the improvement of Zhang’s theorem obtained by Wang
and Shim ([11], Theorem 3.1). It claims that under (2.23) we have

K
PEHOIT\TE] 0,

Therefore, taking into account (2.22), we finally get

A1es1/2
PEKHON(,CKSY?) _

]

As corollaries of Theorem 2.1 we obtain Theorem 1.1 and the following
result.

Theorem 2.2. For any €,e5 > 0 there exist 6 = d(eq,€2) > 0 and Ky =
Ko(ey, €2) such that for any dictionary D, 657 (D) < §, K > Ky, the follow-
ing statement holds. If v = fy € (D) and its nonzero coefficients belong
to [~1,1] \ (—e1,€1), then rIEOFe)l =0

12



Proof. Tt is clear that for any A C T we have
lxall* > e[ Al.

Hence according to (2.4) we get

Then R
051/2
e
Thus, to complete the proof it remains to choose § = d(€y, €2) such that

651/2
6

2
€]

6N (x, CK6'?) < K6

S €9.

O

Lemma 2.2. Assume that p < 1 and numbers z;, 1 <i < K, K > Ky(p)
are uniformly distributed on [—1, 1] independent random variables. Then

{i: fail <p} <2pK
with probability greater than 1 — exp(—C(p)K).

Proof. For i,1<1i< K, weset§ =0,if |x;] > p, and & = 1, otherwise. So
& has Bernoulli distribution with

P{&=1=p P{&=0=1-p E{=p
By Hoeffding’s inequality (see, for instance, [10], p. 198, inequality (4.22))

we obtain
| K
2
P {E ;5 -p= p} < exp(—Kp”/2).

Clearly,

K

il <pH =36

i=1

Therefore,

P{{i: |z:| <p} <2p}=P {%Z_;f < 2p} > 1 —exp(—Kp?/2).

13



We now give a proof of Theorem 1.1 from the Introduction.

Proof. Let R
= 2(8) == O3>

According to Lemma 2.1 with probability greater than 1 —exp(—C(d)K) we
have
REEREZIIS %1/3}‘ < 243K (2.24)

To prove the theorem we need to estimate N(x, K ). Consider A C T such
that

Ixa]|* < 5K
Then we estimate
Al = [{i €Az <P+ |{i €A |ay| > 53}
K (224)
< Hie Az <%1/3}|+—% < 243K 4+ 23K = 3xPK.
(1732

Therefore, by definition (2.4) we have
N(x, %K) < 3:'PK = 3(C)/35"/°K.

To complete the proof it remains to apply Theorem 2.1 for § < 0.001 provid-
ing
N(x,»xK) < eK/6.

3 Lebesgue-type inequalities

We discuss here the Lebesgue-type inequalities for the WCGA with 7 = {t},
t € (0,1]. We repeat the above assumptions A1 and A2 with remarks on the
corresponding properties of dictionaries. For a given fy let sparse element

(signal)
f=1=) ng
i€T
be such that || fo — f¢|| < e and |T| = K. For A C T denote
fa=fy= Zl‘zgz

€A

14



Here are two assumptions that we will use.
Al. We say that f = >, , x;g; satisfies the Nikol’skii-type £, X inequal-
ity with parameter r if

D lul < CHA||fall, ACT, r=>1/2. (3.1)
icA
We say that a dictionary D has the Nikol’skii-type ¢; X property with param-
eters K, r if any K-sparse element satisfies the Nikol’skii-type ¢ X inequality
with parameter r.
A2. We say that f = )., x;g; has incoherence property with parame-
ters D and U if for any A C T and any A such that ANA =0, |A|+|A| < D
we have for any {c¢;}

1fa =D cigll =2 U fall- (3.2)
ieA
We say that a dictionary D is (K, D)-unconditional with a constant U if for
any f =3, crxg; with [T'| < K inequality (3.2) holds.

The term unconditional in A2 is justified by the following remark. The
above definition of (K, D)-unconditional dictionary is equivalent to the fol-
lowing definition. Let D be such that any subsystem of D distinct elements
e1,...,ep from D is linearly independent and for any A with |A] < K and
any coefficients {¢;} we have

D
1Y el <UD ciell.
1

€A =

Let D be the Riesz dictionary with depth D and parameter § € (0,1).
This class of dictionaries is a generalization of the class of classical Riesz
bases. We give a definition in a general Hilbert space (see [10], p. 306).

Definition 3.1. A dictionary D is called the Riesz dictionary with depth D
and parameter 6 € (0,1) if, for any D distinct elements ey, ...,ep of the
dictionary and any coefficients a = (aq,...,ap), we have

D
(L= 8)llall3 < Y asesll® < (1 +6)llall3.
i=1

We denote the class of Riesz dictionaries with depth D and parameter 6 €
(0,1) by R(D,9).

15



It is clear that the term Riesz dictionary with depth D and parameter
d € (0,1) is another name for a dictionary satisfying the Restricted Isometry
Property with parameters D and §. The following simple lemma holds.

Lemma 3.1. Let D € R(D,J$) and let e;j € D, j = 1,...,s. For f =
> jaie; and A C {1,...,s} denote

SA(f) = Zaiei.
€A
If s < D then
ISACHI* < (1 +6)(1 = 8) I fII”

Lemma 3.1 implies that if D € R(D,d) then it is (D, D)-unconditional
with a constant U = (1 + §)¥/2(1 — §)~1/2.

We need the concept of cotype of a Banach space X. We say that X
has cotype ¢ > 2 if for any finite number of elements u; € X we have the
inequality

1/q 1/q
(AverageiH Z iuin) > C (Z Huz”q> :
It is known that the L, spaces with 2 < p < oo have cotype ¢ = p and L,

spaces with 1 < p < 2 have cotype 2.

Remark 3.1. Suppose D is (K, K)-unconditional with a constant U. As-
sume that X s of cotype q with a constant Cy. Then D has the Nikol’skii-type
0, X property with parameters K,1 —1/q and Cy = 2UC’;1.

Proof. Our assumption about (K, K)-unconditionality implies: for any A,
|A| < K, we have

Y - migill =D wigi — Y migill <201 gl

icA €A} i€A_ icA

Therefore, by ¢-cotype assumption

1D wgillt = 20)7°CEY |l

€A €A

16



This implies

1/q
D fa| < A (Z |Ii|q> <20CH AV 2igi).

1€A €A €A
O

The above proof also gives the following individual function version of
Remark 3.1.

Remark 3.2. Suppose f =) ... xig; has incoherence property with param-
eters D and U. Assume that X has cotype q with a constant C,. Then f
satisfies the Nikol’skii-type 01X inequality with parameter r = 1 — 1/q and
Cl = QUC(;I

It is known that a Hilbert space has cotype 2. Therefore, Remark 3.2
shows that assumption A2 implies assumption A1l with » = 1/2. This
explains how Theorem 1.3 is derived from Theorem 1.2.

We note that the (K, CK)-unconditionality assumption on the dictio-
nary D in a Hilbert space H is somewhat weaker than the assumption
D € R(CK,6). Also, our theorems do not assume that the dictionary sat-
isfies assumptions A1l and A2; we only assume that the individual function
f, a K-sparse approximation of a given fy, satisfies A1 and A2.

In assumption (3.2) we always have U > 1. In the extreme case U = 1
assumption (3.2) is a strong assumption that leads to strong results.

Proposition 3.1. Let X be a uniformly smooth Banach space. Assume that
[ = ier®igi, |T| = K, and the set of indices T' has the following property.
For any g € D distinct from g;, i € T, and any ¢;, ¢ we have

1> cigi—cgll =11 cgill (3.3)
i€T i€T

Then the WCGA with t,, # 0, k = 1,2,..., recovers f exactly after K
iterations.

Proof. 1t is known (see, for instance, [10], Lemma 6.9, p. 342) that (3.3)
implies
Fi(9) =0, g€ D\{gitier-

17



Thus, at the first iteration the WCGA picks ¢1 € {g;}ier. Then f; has the
form ). . cig; and we repeat the above argument. Then ¢, € {g; }ier \ {¢1}-
After K iterations all g;, © € T, will be taken and therefore we will have
Jr =0. O

Proposition 3.1 can be applied in the following situation. Assume that
U = {¢;}22, is a monotone basis for a uniformly smooth Banach space X.
Then any f = Zfil x;0; will be recovered by the WCGA after K iterations.
In particular, this applies to the Haar basis in L,, 1 < p < oo.

We now proceed to main results of this section.

Theorem 3.1. Let X be a Banach space with p(u) < ~yu®. Suppose for a
given fo we have || fo— f¢|| < € with K-sparse f := f€ satisfying A1 and A2.
Then for any k > 0 we have for K +m < D

ci(m—k
Il < Wallexp (-2 ) 2

. t2
where C1 = W

Proof. Let
f=r= ingh T|=K, g €D.
ieT
Denote by T™ the set of indices of g; picked by the WCGA after m iterations,
[ .= T\ T™. Denote by A;(D) the closure in X of the convex hull of the
symmetrized dictionary D* := {+g,9 € D}. We will bound ||f,| from
above. Assume || f,—1|| > €. Let m > k. We bound from below

Sm = sup [Fy, (9]
pe A1 (D)

Denote A,, :=I'""!'. Then
Sm Z Ffm71<fAm/||fA'm||1>7
where || falli :=>,c4 |7i|. Next, by Lemma 6.9, p. 342, from [10] we obtain

Ffm—l(fAm) = Ffm—l(fe) > Hfmfl” — €.

Thus
S = a1 ([ fnesll = €).
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By (3.1) we get

[fanlls < ColAm["[[fan | < CLET || fa,, I

Then

| frnall — €
S, > = _ 3.4
— Ci1K7||fa (3:4)

From the definition of the modulus of smoothness we have for any A

A
s = Al + L fos = Al < 20 fos (1 T (m)) (3.5)

and by (1) from the definition of the WCGA and Lemma 6.10 from [10], p.
343, we get

[Fy,y (om)| = tsup [Fy,, , (9)] =
g€eD

t sup |Fy, (o) =tSp.
$€A1(D)

Then either Fy, ,(pn) > tSy, or Fr  (—¢m) > tS,,. Both cases are treated
in the same way. We demonstrate the case Fy,, ,(pm) > tS,,. We have for
A>0

Hfm—l + A‘PmH > Ffm71<fm—1 =+ /\(;Dm) > Hfm—lH + AtSm'

From here and from (3.5) we obtain
1 fll < Mt = Apmll < ([ frnall 4 E (=AES 4 2 frna [ oA/ [] frna 1))

We discuss here the case p(u) < yu?. Using (3.4) we get

A\t A2 et
ol < ol (1= = 19 +
1ol <111 1”( Gk 7||fm_1u2) CE /A

Let \; be a solution of

Y o, N2 el
201 K7 || fa, | [l 7 4K fa

Our assumption (3.2) gives

[fanll = [(f = Gn-1)a,ll U|f = Gl
< U(|lfo = Gusll + I fo = fN) S U frn=1ll +€).
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Specify

_ tlfal
16’)/01KTU2'
Then, using || f_1|| > € we get
2
A l?
A A faall?
and obtain
t? et?
m < m— 1- .
Hf H = Hf 1|| ( 32’)/012U2K2’") + 16’)/C'12U2K2T
Denote ¢; := W Then
c1(m—k)
Il < Willexp (=20 4 2

O

Theorem 3.2. Let X be a Banach space with p(u) < vyu?. Suppose K-sparse
1€ satisfies A1, A2 and ||fo — f¢|| < €. Then the WCGA with weakness
parameter t applied to fy provides

HfC(t,’y,CH)UQ In(U+1)K?2" || S CUE fOT K —+ C(t, Y, Cl)U2 IH(U + 1)K2T S D
with an absolute constant C' and C(t,~,Cy) = CoyC3t 2.
We formulate an immediate corollary of Theorem 3.2 with e = 0.

Corollary 3.1. Let X be a Banach space with p(u) < ~yu?. Suppose K -sparse
f satisfies A1, A2. Then the WCGA with weakness parameter t applied to f
recovers it exactly after C(t,~, C)U? In(U + 1) K*" iterations under condition
K+ C(t,v,C)U?In(U + 1)K* < D.

Proof. We use the above notations 7™ and I' := T'\ T™. Let k£ > 0 be
fixed. Suppose
2"t < |TF) < 2m.

For j =1,2,...,n,n + 1 consider the following pairs of sets A;, B;: A,11 =
I* By = 0; for j < n, A; :=T%\ B; with B; C T'* is such that |B;| >
IT%| — 27~ and for any set J C I'* with |J| > |T*| — 2/=! we have

15, < 1 f51l-
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We note that this implies that if for some @ C I'* we have
Ifall < Il fs;]l then |Q[ < |D*|—27% (3.6)
For a given b > 1, to be specified later, denote by L the index such that
(BO = Fk)
1/l < 0ll.f5. ]I,
1/l < bll.f5. 1,

||fBL72|| < b||fBL71 ||’

| fB._ill > 0l fB,ll-
Then '
1B, I <" fe, 0l G=1,2,..., L. (3.7)

We now proceed to a general step. Let m > k and let A, B C I'* be such
that A = T'®\ B. As above we bound S,,, from below. It is clear that S,, > 0.
Denote A,, :== ANT™ ! Then

S = Fro s (fa /1 fan1l1)-

Next,
Ffm—l(fAm) - Ffm—l(fAm + fB - fB)

Then fa, + fz = f<— fa with Fy,,_,(fa) = 0. Moreover, it is easy to see
that Fy, _,(f) = || fm-1ll — €. Therefore,

By (fa, + f8—fB) 2 | fmall — e =I5l

Thus
S > |1 fa, Iy max(0, || fresll — € = | f5]])-

By (3.1) we get

| fanllt < CilAR| [ fan ]l < CUA|™ fa,]l-
then el = 11l
S,, > Wm-tl — 1Bl = € (3.8)
C1|A["| fa,
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From the definition of the modulus of smoothness we have for any A

A
s = Aol + s Al < 2 sl (4 )

and by (1) from the definition of the WCGA and Lemma 6.10 from [10], p.
343, we get
| F,s ()| 2 tsup [Fy,,_,(9)] =
g€D
t sup [Fy, ,(9)].
$€A1(D)

From here we obtain
1l < M1 fmall + b (= AESi + 2] ot oA/ [| frn1[D))-

We discuss here the case p(u) < yu?. Using (3.8) we get

At A2 ) M(If5] + )
- 42 +
CHAT /2 Nfmal2) " CIAT 4

Vol < sl (1

Let Ay be a solution of

S V) R W | 7]
20 A1 fal T P 7 9 CAT I

Our assumption (3.2) gives

[fanll U fmall +€).

Specify Wl
— Am
N 16701’A|TU2

Then A < A\; and we obtain

(3.9)

foull <l fonca <1 s ) L sl +o)

C329C2U2|A ) T 167 CRAPU?

2 . . .
Denote ¢; := ?)Qﬂytc—gUz and ¢y := This implies for my > my > k
1

t2
164C3U2"
C2 (m2 - ml)

all < W 0 = /APy 4+

U/l +€).
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Define mg := k and, inductively,
m;=mj_1+ BlA7, j=1,...,n
At iterations from m;_; + 1 to m; we use A = A; and obtain from (3.9) that
Vll < a1 = ) + 20 ol + ), 1= cr] A2
Using 1 —u < e and > (1 — u)* = 1/u we derive from here
o, I < i e+ 2(1 f, [+ €.

We continue it up to j = L. Denote 1 := e~“%. Then

L
e | < W felln™ 2 (15, ||+ €™
j=1

We bound the || fi||. It follows from the definition of fj that || fi|| is the error
of best approximation of fy by the subspace ®;. Representing fo = f+ fo— f
we see that || fx|| is not greater than the error of best approximation of f by
the subspace @y plus || fo — f||. This implies || fx|| < ||f5,|| + €. Therefore
using (3.7) we continue

L
< (Ifoll + n™ + 2 (1 f5,l(0b) b~ + en ™)

j=1

L
<07 fa, ((nb)L +2Z(nb)L‘j> T
j=1

L—mn

We will specify 3 later. However, we note that it will be chosen in such a
way that guarantees n < 1/2. Choose b = % Then

| < 115, 18677 + 4e. (3.10)
By (3.2) we get
1 feme | < U fin I+ €) < U5, 11877 + 5e).
If ||f5,_,|| < 10Ue then by (3.10)

[fm, || < CUe.
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If | f5,_,|| > 10Ue then making 3 sufficiently large to satisfy 16Ue~# < 1

so that g = %jjﬂ), we get

U(||fBL71 ||86_01B + 56) < ||fBL71 ||
and therefore

[ fome |l < 1 fBo-ill-

This implies (see (3.6)
IT™%| < |T%| — 25872,

We begin with fy and apply the above argument (with k£ = 0). As a result we
either get the required inequality or we reduce the cardinality of support of f
from |T| = K to |[T™1| < |T|—21172 mp, < 52211, We continue the process
and build a sequence my, such that mp, < £32%Li and after my,; iterations
we reduce the support by at least 22972, We also note that my, < B2 K2,
We continue this process till the following inequality is satisfied for the first

time
mr, + 4 mr, Z 24T6K2T.

Then, clearly,
mp, + - +my, < 27HBKP

Using the inequality
(a1+"'+an)9§a§+"‘+a9 ajzoa 06(071]

n’

we derive from (3.11)
oLi=2 L ... 4 oln-2 > (227«(L1—2) 4t 227«(Ln—2)) o

> 972 (92l 4y 22an>%

> 272 ((ﬂ)_l(le S +an))271T > K.

(3.11)

Thus, after not more than N := 24 T!8K? iterations we recover f exactly

and then [[fx]| < |lfo— fll <€

]

Theorem 1.2 from the Introduction follows from Theorems 3.2 and 3.1.
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4 Discussion

We begin with presenting some known results about exact recovery and the
Lebesgue-type inequalities for incoherent dictionaries. In this case we use an-
other natural generalization of the WOMP. This generalization of the WOMP
was introduced in [9]. In the paper [5] we proved Lebesgue-type inequalities
for that algorithm. We now formulate the corresponding results. We recall a
generalization of the concept of M-coherent dictionary to the case of Banach
spaces (see, for instance, [10]).

Let D be a dictionary in a Banach space X. The coherence parameter of
this dictionary is defined as

M(D) := sup sup|F,(h)|.
g#h;g,h€eD Fy

In general, a norming functional Fj is not unique. This is why we take
supp, over all norming functionals of g in the definition of M (D). We do
not need supy, in the definition of M(D) if for each g € D there is a unique
norming functional F, € X*. Then we define D* := {F,,g € D} and call
D* a dual dictionary to a dictionary D. It is known that the uniqueness of
the norming functional Fj, is equivalent to the property that g is a point of
Gateaux smoothness:

lim([lg +wy|| + [lg — wyll = 2[lgll)/u=0

for any y € X. In particular, if X is uniformly smooth then F’ is unique for
any f # 0. We considered in [9] the following greedy algorithm which gener-
alizes the Weak Orthogonal Greedy Algorithm to a Banach space setting.

Weak Quasi-Orthogonal Greedy Algorithm (WQOGA). Let t €
(0,1] and fy be given. Find ¢, := ¢?" € D (here and below index ¢ stands
for quasi-orthogonal) such that

|F<p1(f0)| > tsup |Fg<f0)|-

geD

Next, we find ¢; satisfying

Fem(f - 01901> =0.

Denote fi := fi' == f — c1¢1.
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We continue this construction in an inductive way. Assume that we
have already constructed residuals fy, fi,..., fn_1 and dictionary elements
1, Pm—1. Now, we pick an element ¢, := ¢%! € D such that

|Fo (fn-1)| = tsup | Fy(fm-1)]-

Next, we look for cf*, ..., c satistying
Fo(f=> c'e)=0, j=1,..m. (4.1)
i=1

If there is no solution to (4.1) then we stop, otherwise we denote G,, =
Got.=3%"" My and fi, = [P = [ — G, with ¢, ..., ¢ satisfying (4.1).

Remark 4.1. Note that (4.1) has a unique solution if det(F,, (¢:))7=; #
0. Applying the WQOGA in the case of a dictionary with the coherence
parameter M = M (D) gives, by a simple well known argument on the linear
independence of the rows of the matriz (F,,(;))i%=,, the conclusion that
(4.1) has a unique solution for any m < 1+ 1/M. Thus, in the case of
an M-coherent dictionary D, we can run the WQOGA for at least [1/M]
iterations.

In the case t = 1 we call the WQOGA the Quasi-Orthogonal Greedy
Algorithm (QOGA). In the case of QOGA we need to make an extra as-
sumption that the corresponding maximizer ¢, € D exists. Clearly, it is the
case when D is finite.

It was proved in [9] (see also [10], p. 382) that the WQOGA is as good
as the WOMP in the sense of exact recovery of sparse signals with respect
to incoherent dictionaries. The following result was obtained in [9].

Theorem 4.1. Let t € (0,1]. Assume that D has coherence parameter M.
Let K < -—(1+1/M). Then for any fy of the form

1+t
K
fo= E a;g;,
i=1

where g; are distinct elements of D, the WQOGA recovers it exactly after K
iterations. In other words, f&' = 0.
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It is known (see [10], pp. 303-305) that the bound K < $(1 + 1/M) is
sharp for exact recovery by the OGA.
We introduce a new norm, associated with a dictionary D, by the formula

I fllp :=sup [Fy(f)l, feX.
gD

We define best m-term approximation in the norm Y as follows

om(f)y = inf_|f—gllv.

g€Xm (D)

In [5] the norm Y was either the norm X of our Banach space or the norm
| - ||[p defined above. The following two Lebesgue-type inequalities were
proved in [5].

Theorem 4.2. Assume that D is an M -coherent dictionary. Then for
m < ﬁ we have for the QOGA

Theorem 4.3. Assume that D is an M-coherent dictionary in a Banach
space X. There exists an absolute constant C' such that, for m < 1/(3M),
we have for the QOGA

< i — - ,
Ifullx <C_int (1 = gllx +mllf = glo)

Corollary 4.1. Using the inequality ||g||p < ||g|lx, Theorem 4.3 obtains

[fmllx < C(L+m)om(f)x-

Inequality (4.2) is a perfect (up to a constant 13.5) Lebesgue-type in-
equality. It indicates that the norm || - ||p used in [5] is a suitable norm for
analyzing performance of the QOGA. Corollary 4.1 shows that the Lebesgue-
type inequality (4.2) in the norm || - ||p implies the Lebesgue-type inequality
in the norm || - || x.

Thus, results of this paper complement the above discussed results from
[9] and [5]. Results from [9] and [5] deal with incoherent dictionaries and use
the QOGA for exact recovery and the Lebesgue-type inequalities. Results of
this paper deal with dictionaries which satisfy assumptions A1 and A2 and
we analyze the WCGA here. In the case of a Hilbert space, assumptions A1l
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and A2 are satisfied if D has RIP. It is well known that the RIP condition is
much weaker than the incoherence condition in the case of a Hilbert space.
It is interesting to note that we do not know how the coherence parameter
M (D) is related to properties A1 and A2 in the case of a Banach space.

We now give a few applications of Theorem 1.2 for specific dictionaries
D. We begin with the case when D is a basis ¥ for X. In some of our
examples we take X = L,, 2 < p < oco. Then it is known that p(u) < yu?
with v = (p —1)/2.

Example 1. Let X be a Banach space with p(u) < yu? and with cotype
q. Let ¥ be a normalized in X unconditional basis for X. Then U < C'(X, ).
By Remark 3.1 U satisfies A1 with r =1 — %. Theorem 1.2 gives

||fC(t,X,\If)K2—2/q|| < Cok(fo, V). (4.3)

We note that (4.3) provides some progress in Open Problem 7.1 (p. 91) from
8].

Example 2. Let ¥ be a uniformly bounded orthogonal system normal-
ized in L,(Q), 2 < p < oo, 2 is a bounded domain. Then we can take
r = 1/2. The inequality

lgll, < CKY2717||g]l,
for K-sparse g implies that
ISa(Pllp < CEVZPSA()]l2 < CEVZP||flla < CKY2TV| £l
Therefore U < CK'/?71/P_ Theorem 1.2 gives

”fC(t,p,D)KW’ anHp < Cok( fo, ‘I’)p- (4.4)

Inequality (4.4) provides some progress in Open Problem 7.2 (p. 91) from
8].

Theorem 1.2 can also be applied for quasi-greedy bases and other greedy-
type bases (see [10]). We plan to discuss these applications in detail in our
future work.

In this paper we limit ourselves to the case of Banach spaces satisfying
the condition p(u) < yu?. In particular, as we mentioned above the L, spaces
with 2 < p < oo satisfy this condition. Clearly, the L, spaces with 1 <p <2
are also of interest. For the clarity of presentation we do not discuss the case
p(u) < ~vuf in this paper. The technique from Section 3 works in this case
too and we will present the corresponding results in our future work.
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