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A NEW PROOF OF THE ATOMIC DECOMPOSITION
OF HARDY SPACES

S. DEKEL, G. KERKYACHARIAN, G. KYRIAZIS, AND P. PETRUSHEV

ABSTRACT. A new proof is given of the atomic decomposition of Hardy spaces
HP, 0 < p <1, in the classical setting on R™. The new method can be used
to establish atomic decomposition of maximal Hardy spaces in general and
nonclassical settings.

1. INTRODUCTION

The study of the real-variable Hardy spaces H?, 0 < p < 1, on R™ was pioneered
by Stein and Weiss [6] and a major step forward in developing this theory was made
by Fefferman and Stein in [3], see also [5]. Since then there has been a great deal of
work done on Hardy spaces. The atomic decomposition of HP was first established
by Coifman [1] in dimension n =1 and by Latter [4] in dimensions n > 1.

The purpose of this article is to give a new proof of the atomic decomposition of

the HP spaces in the classical setting on R™. Our method does not use the Calderén-
Zygmund decomposition of functions and an approximation of the identity as the
classical argument does, see [5]. The main advantage of the new proof over the
classical one is that it is amenable to utilization in more general and nonclassical
settings. For instance, it is used in [2] for establishing the equivalence of maximal
and atomic Hardy spaces in the general setting of a metric measure space with the
doubling property and in the presence of a non-negative self-adjoint operator whose
heat kernel has Gaussian localization and the Markov property.
Notation. For a set E C R™ we will denote E + B(0,0) := UyepB(z,d), where
B(z,d) stands for the open ball centered at x of radius 6. We will also use the
notation c¢B(x,0) := B(x,cd). Positive constants will be denoted by ¢, ¢q,... and
they may vary at every occurrence; a ~ b will stand for ¢; < a/b < co.

1.1. Maximal operators and HP spaces. We begin by recalling some basic
facts about Hardy spaces on R™. For a complete account of Hardy spaces we refer
the reader to [5].

Given ¢ € S with S being the Schwartz class on R™ and f € 8’ one defines

(1.1) M,f(z) = igg lor * f(x)] with oy(z) ==t 'z), and

(1.2) Mg, . f(x) := sup sup los x f(y)], a>1.
150 yeRn, [z—y| <at

We now recall the grand maximal operator. Write

P = sup (1+ |z))Y max [|0%(z
wle) = sup (14 Ja) max [070(z)
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and denote
Fn = {(p eS: PN((p) < 1}.
The grand maximal operator is defined by

(1.3) My f(x) = sup M, f(z), feS"
pEFN

It is easy to see that for any ¢ € S and @ > 1 one has
(1.4) M; o f(x) < a"Py(p)Myf(z), feS'

Definition 1.1. The space HP, 0 < p < 1, is defined as the set of all bounded
distributions f € S such that the Poisson mazimal function sup,q|P: * f(z)]
belongs to LP; the quasi-norm on HP is defined by

(1.5) I fllee = || sup | x FOll -

As is well known the following assertion holds, see [3, 5]:

Proposition 1.2. Let 0 <p <1, a>1, and assume ¢ € S and fRn @ #0. Then
forany N = [ 2] +1

(1.6) 1 llzre ~ MG o flle ~ | Mn fllze, Ve HP.

1.2. Atomic HP spaces. A function a € L (R") is called an atom if there exists
a ball B such that

(i) suppa C B,
(i) flallz~ < |B|7!/?, and
(iii) [pn z*a(z)dz = 0 for all o with |a| < n(p~' —1).

The atomic Hardy space HY, 0 < p < 1, is defined as the set of all distributions
f € 8’ that can be represented in the form

(1.7) f= Z)\jaj, where Z [A;]P < o0,
j=1 j=1

{a;} are atoms, and the convergence is in S’. Set

. > 1/p
(1.8) 70y = ,_jnt, (j_l nIP) e Y

2. ATOMIC DECOMPOSITION OF HP SPACES

We now come to the main point in this article, that is, to give a new proof of
the following classical result [1, 4], see also [5]:

Theorem 2.1. For any 0 < p < 1 the continuous embedding H? C HY is valid,
that is, if f € HP, then f € HY and

(2.1) [ fllz < el fllw,

where ¢ > 0 is a constant depending only on p,n. This along with the easy to prove
embedding HY) C HP leads to H? = HYy and ||f|ze ~ || f|lgz for f € HP.

Proof. We first derive a simple decomposition identity which will play a central
role in this proof. For this construction we need the following
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Lemma 2.2. For any m > 1 there exists a function ¢ € C§°(R™) such that
suppy C B(0,1), ¢(0) = 1, and 9*¢(0) = 0 for 0 < |a] < m. Here ¢p(x) :=
Jgn o(@)e™ " d.

Proof. We will construct a function ¢ with the claimed properties in dimension
n = 1. Then a normalized dilation of ¢(x1)p(z2) - ¢(z,) will have the claimed
properties on R".

For the univariate construction, pick a smooth “bump” ¢ with the following
properties: ¢ € C3°(R), supp ¢ C [—1/4,1/4], ¢(x) > 0 for x € (—1/4,1/4), and ¢
is even. Let ©(x) := ¢(z + 1/2) — ¢(x — 1/2) for z € R. Clearly © is odd.

We may assume that m > 1 is even, otherwise we work with m + 1 instead.
Denote A} := (T, — T—1)™, where T}, f(x) := f(z + h).

We define p(z) := 2A™O(z), where h = . Clearly, p € C°(R), ¢ is even,

~z 8m

and supp ¢ C [—Z,—2] U [%, I]. It is readily seen that for v =1,2,...,m
2Q) = (i) [ e Ape()e ds
R

and hence
S(0) = (—i)" / P LATO(2)dz = (—i)+™ / O(z) ATz dz = 0.
R R

On the other hand,
3/4

»(0) = /Rgp(:c)dz = 2/0OO I ATO(x)dr = 2(—1)™ /1/4 O(x)Ayz ldx.

However, for any sufficiently smooth function f we have A7 f(z) = (2h)™ f(™)(¢),
where £ € (x — mh,x + mh). Hence,

APzt = (20)"m!(=1)"¢ ™ with € € (x —mh,x +mh) C [1/8,7/8].
Consequently, $(0) # 0 and then $(0)~Lp(x) has the claimed properties. [

With the aid of the above lemma, we pick ¢ € C§°(R™) with the following
properties: supp ¢ C B(0,1), ¢(0) = 1, and 0*¢(0) = 0 for 0 < |a| < K, where K
is sufficiently large. More precisely, we choose K > n/p.

Set ¢ () := 2"p(22) — @(z). Then (&) = $(£/2) — p(€). Therefore, ) (0) = 0
for |a| < K which implies [p, 2*¢(z)dz = 0 for |a| < K. We also introduce the
function 1(z) := 2"¢(2x) + @(z). We will use the notation hy(z) := 28"h(2kz).

Clearly, for any f € S’ we have f = lim;_,o ¢; * ¢; * f (convergence in S’),
which leads to the following representation: For any j € Z

f:@j*@j*f+z[@kﬂ*@kﬂ*f—s@k*@k*f]
h=j

=¥j *@j*f‘FZ [Prt1 — @r] * [Prr1 + @r] * f.
k=3
Thus we arrive at
(22) f=gjxpj*xf+ Zﬂ)k s« f, VfeS VjeZ (convergencein S').
k=3
Observe that supp ¢, C B(0,27%) and supp U C B(0,27F).
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In what follows we will utilize the grand maximal operator My, defined in (1.3)
with N := [ 2] 4+ 1. The following claim follows readily from (1.4): If ¢ € S, then
forany f €S8, k€ Z,and r € R
(2.3) lpr * f(y)] < eMyf(z) forall yeR™ with |y — x| <2771

where the constant ¢ > 0 depends only on Py (¢) and N.
Let fe€ HP, 0 <p<1, f#0. We define

(2.4) Qi ={zeR": Myf(z)>2"}, rel
Clearly, Q,. is open, Q2,11 C Q,, and R" = U,.¢z,. It is easy to see that
(25) Sl <e [ Myf@Pdue) < ol

rEZ "

From (2.5) we get || < 27| f|%, for r € Z. Therefore, for any r € Z
there exists J > 0 such that [[¢; * p; * flloc < 2" for j < —J. Consequently,
llpj * @; * flloo = 0 as j — —oo, which implies

K
J— 1 7 . !
(2.6) f= Kh_rgo E Y * Y * [ (convergence in §’).

k=—o00
Assuming that Q, # 0 we write
B o= {x € Q,  dist(z, Q%) > 271\ {z € Q,pq : dist(z, Q74 ,) > 271

By (2.5) it follows that |2,.| < oo and hence there exists s, € Z such that E,s_ # 0
and E,; = 0 for k < s,.. Evidently s, < s,1. We define

e R@=Y [ ue-phoe o, ceR ez
E>s,. ” Erk

and more generally

(28)  Frp (@)= 3 [E n(z — g * f)dy, 5 < o < i1 < 0.

k=ko

It will be shown in Lemma 2.3 below that the functions F,. and F. ., ., are well
defined and Fj., F} o x, € L™.
Note that supp ¢ C B(0,27%) and hence

(2.9) supp (/E Yr(z — y)i/;k * f(y)dy) C E.. + B(0, 2"“).

On the other hand, clearly 2B(y,27%) N (Qr \ Qr+1) # () for each y € E,k, and
Py (1) < ¢. Therefore, see (2.3), Uy, * f(y)| < 2 for y € E,, which implies

(2.10) H /Ewk(. — )i, * f(y)dyHoo <2, VEC Ey
Similarly,
(2.11) H /E Or(- — Y)Pr * f(y)dyHoo <c2", VECE,.

We collect all we need about the functions F, and F; ., x, in the following
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Lemma 2.3. (a) We have
(2.12) ExNE =0 ifr#7r and R"=UqezEr,, VkeZ.
(b) There exists a constant ¢ > 0 such that for any r € Z and s, < ko < k1 < 00

(2.13) 1Fr]loo < €27, || Frkpmnlloo < €27

(¢) The series in (2.7) and (2.8) (if K1 = 00) converge point-wise and in distri-
butional sense.
(d) Moreover,

(2.14) F.(x)=0, VzeR"\Q,, VrelZ

Proof. Identities (2.12) are obvious and (2.14) follows readily from (2.9).

We next prove the left-hand side inequality in (2.13); the proof of the right-hand
side inequality is similar and will be omitted. Consider the case when Q.1 # 0
(the case when Q.1 = 0 is easier). Write

Up = {z € Q : dist(z, Q) > 2751}, Vi = {& € Q= dist(2,97,,) > 2751}

Observe that E,, = Uy \ Vi.
From (2.9) it follows that |F,.(x)| = 0 for x € R™ \ Ug>s, (Erx + B(0,27F)). We
next estimate |F,.(x)| for 2 € Ug>s, (Erp+B(0,27%)). Two cases present themselves

here.
Case 1: x € [Ukzsr (Erk + B(072_k))] N Q,41. Then there exist v, ¢ € Z such
that

(2.15) 2 € (U1 \Ue) N (Vyss \ Vi),

Due to Q2,41 C 2, we have Vj, C Uy, implying (Upi1 \Up) N (V11 \V,) =0 if v < £.
We consider two subcases depending on whether v > ¢+ 3 or £ <v < /{+ 2.
(a) Let v > £+ 3. We claim that (2.15) yields

(2.16) B(x,27"NEx=0 for k>v+2or k<{-1.

Indeed, if k > v+ 2, then E,;, C Q. \ V, 12, which implies (2.16), while if £ < ¢ —1,
then E,p C U;_1, again implying (2.16).
We also claim that

(2.17) B(z,27")CEy for (+2<k<v-1.
Indeed, clearly
(Ues1 \Ue) N (Vo1 \ Vo) C (Uk—1 \Ue) N (Viy1 \ Vit1) C Up—1 \ Vi,

which implies (2.17).
From (2.9) and (2.16)- (2.17) it follows that

1/+1 €+1
P / i — )P £y by = / Uiz — )0 * F(y)dy

v+1

+ Z Ur(@ = y)dr* fy)dy + Y / Ui (x — y) i * f(y)dy.

k=042 /R k=v—1
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However,
v—2 B v—2
> Gr(@ =y x F)dy = Y [@rir % ey * f(z) — ok * o % f(2)]
k=t+27/R" k=0+2

= Pu—1*Pu—1* [(T) — Qo2 * pry2 * f(z)

= /E v—1(x —y)pu—1* f(y)dy — / ev2(z — Y)pera * f(y)dy.

Eroi2

Combining the above with (2.10) and (2.11) we obtain |F,(z)| < ¢2".
(b) Let £ < v < £+ 2. Just as above we have

v+1 £+3

Fo(z) = Z/E (@ — y) e * f(y)dy = Z/E (2 — y)ibr = f(y)dy
k=¢ rk k=" Prk

We use (2.10) to estimate each of these four integrals and again obtain |F,.(z)| < ¢2".
Case 2: z € Q,\ Q,41. Then there exists £ > s, such that

WS (U(+1 \ Uz) N (QT \Qr+1).

Just as in the proof of (2.16) we have B(x,27*) N E,, =0 for k < ¢ — 1, and as in
the proof of (2.17) we have

(U1 \Ue) N (2 \ Q1) C Up—1 \ Vit
which implies B(z,27%) C E,, for k > £+ 2. We use these and (2.9) to obtain

RE)=3 /E (o= ) )y

+1 oo
=X [ oo bty + > [ e )i S
k=t Erk k=t+2 7 R"
For the last sum we have
> i@ — y) e+ fy)dy = Jim > i x f(2)

k=042 R" k=0+2

= lim (Pvt1 * Qus1 * F(T) — Quya * poya * f(2))

= lim. ( / vz = y)pvrr * fy)dy — per2(r = Y)pe2 * f (y)dy)-

Er i1 Er g2

From the above and (2.10)-(2.11) we obtain |F,.(z)| < ¢2".
The point-wise convergence of the series in (2.7) follows from above and we
similarly establish the point-wise convergence in (2.8).
The convergence in distributional sense in (2.7) relies on the following assertion:
For every ¢ € S

(2.18) Z [{grk, #)| < 00, where g¢,1(2) ::/E Uz — y)Uy * f(y)dy.
k>s, rk

Here (g,k, ¢) := fRn griddz. To prove the above we will employ this estimate:
(2.19) [k flloo < 252\ flln, k€ Z.
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Indeed, using (1.4) we get

BRSPS s S M)
< o|B(x, 27" / My (D) @)Pduly) < 2| £,
B(z,27F)

and (2.19) follows.
We will also need the following estimate: For any o > n there exists a constant

¢y > 0 such that

(2.20) Yz — y)¢(x)dx( <2 FEFD 1 Ly, yeR", k> 0.

..
This is a standard estimate for inner products taking into account that ¢ € S and
Y e C*, suppy C B(0,1), and [, z*¢(x)dx = 0 for |o| < K.

We now estimate |{g,x, ¢)|. From (2.19) and the fact that ¢ € C§°(R) and ¢ € S
it readily follows that

L[ ot = plietlidflduds < oo, k> 5.

Therefore, we can use Fubini’s theorem, (2.19), and (2.20) to obtain for & > 0

(gow 8)] g/

Erk

| nla = y)o()de|[des ()| dy

(221) <@ HESD| f, / (L+ lyl) 7 dy < 2 FEH=0/D)| £,

rk
which implies (2.18) because K > n/p.

Denote Gy := Zi:sr grk- From the above proof of (b) and (2.13) we infer
that Ge(z) — F.(z) as ¢ — oo for z € R™ and ||Gy|lec < 2" < o0 for ¢ > s,.
On the other hand, from (2.18) it follows that the series ), grx converges in
distributional sense. By applying the dominated convergence theorem one easily
concludes that F,. = Zk>ST gr, With the convergence in distributional sense. [

We set F,. := 0 in the case when Q, =0, r € Z.
Note that by (2.12) it follows that

222) s f@) = [ =ty =3 [ e s)iis sy

reZ
and using (2.6) and the definition of F, in (2.7) we arrive at
(2.23) f=Y_F in&, e (f,¢)=) (F.¢), Vp€S,
rez rez

where the last series converges absolutely. Above (f,¢) denotes the action of f
on ¢. We next provide the needed justification of identity (2.23).
From (2.6), (2.7), (2.22), and the notation from (2.18) we obtain for ¢ € S

(F.0) =3 (Wt f,8) = D> (g d) = D > Agrks8) = > _(Fr ).
k k r T k r

Clearly, to justify the above identities it suffices to show that Y, > [(grk, )| < occ.
We split this sum into two: 3, > - - =2 50>, + D pcg 2, =t U1+ o



8 S. DEKEL, G. KERKYACHARIAN, G. KYRIAZIS, AND P. PETRUSHEV

To estimate X1 we use (2.21) and obtain

Sy < cllf s 3 2RI/ /E (1+1y)~"dy
rk

k>0 T
< el fllme 3 2 HUHI=0/p) / (1+y)~"dy < | fllr-
k>0 n

Here we also used that K > n/p and o > n.
We estimate Y in a similar manner, using the fact that [, [¢%(y)|dy < ¢ < oo
and (2.19). We get

Sa <l 2 Y [ [ nte — )ldylota)lds

k<0 r
<clflar 3207 [ (U fal) e < ol
k<0 R

The above estimates of ¥; and ¥y imply >, > |(grk, #)| < 0o, which completes
the justification of (2.23).

Observe that due to [p, 2%¢(z)dx = 0 for |a| < K we have
(2.24) / 2 Fp(x)de =0 for o] < K, reZ.

We next decompose each function F, into atoms. To this end we need a Whitney
type cover for €., given in the following

Lemma 2.4. Suppose Q is an open proper subset of R™ and let p(x) := dist(z, 2°).
Then there exists a constant K > 0, depending only on n, and a sequence of points
{&}jen in Q with the following properties, where p; = dist(§;,Q°):

(a) Q@ =UjenB(&),p;/2).

(b) {B(&j,p;/5)} are disjoint.
(¢) If B(&,22) N B(&,, 222) # 0, then T~ p, < p; < Tp,.
d)

(

Variants of this simple lemma are well known and frequently used. To prove
it one simply selects {B(&;, p(&;)/5)}jen to be a maximal disjoint subcollection of
{B(z, p(z)/5)}zeq and then properties (a)-(d) follow readily, see [5], pp. 15-16.

We apply Lemma 2.4 to each set Q. # (), r € Z. Fix r € Z and assume
Q, # 0. Denote by B; := B(§;,p;/2), j = 1,2,..., the balls given by Lemma 2.4,
applied to €,., with the additional assumption that these balls are ordered so that
p1 > p2 > . We will adhere to the notation from Lemma 2.4. We will also use

the more compact notation B, := {B,};en for the set of balls covering €,..
For each ball B € B, and k > s, we define

(2.25) El = E. N (B+2B(0,27%)) if BNEy#0

and set E5 = if BN E,;, = 0.
We also define, for £ =1,2,...,

(2.26) RE = BN\ U,s B and

For every j € N there are at most K balls B(ﬁy, 32”) intersecting B(ﬁj, %).
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(2.27) Fo ()= Y. [, tnlo = )bes f0)dy.
ks, Bk

Lemma 2.5. For every £ > 1 the function Fg, is well defined, more precisely, the
series in (2.27) converges point-wise and in distributional sense. Furthermore,

(2.28) supp Fp, C 7By,

(2.29) / 2%Fp,(z)dr =0 for all o with |a| <n(p~! —1),
and

(2.30) 1FB, lloo < 52",

where the constant cy is independent of v, {.
In addition, for any k > s,

(2.31) Eu =UsR% and REINRE» =0, (#m.
Hence
(2.32) F. = Z Fp  (convergence in S').

BeB,

Proof. Fix ¢ > 1. Observe that using Lemma 2.4 we have By C Q¢ 4 B(0,2p;)
and hence Ef,f = ) if 271 > 2p,. Define kg := min{k : 27% < p,}. Hence
pe/2 < 27k < p,. Consequently,

(2.33) Fi, (x) = I;O /R U= ) S0y

It follows that supp F, C B(&, (7/2)p¢) = TBg, which confirms (2.28).
To prove (2.30) we will use the following

Lemma 2.6. For an arbitrary set S C R™ let Sy := {x € R" : dist(w, S) < 27F+1}
and set

(2.34) Fs() = k;, /E e s Sy

for some ko > s,. Then ||Fs|loo < €27, where ¢ > 0 is a constant independent of S
and ko. Moreover, the above series converges in S'.

Proof. From (2.9) it follows that Fs(z) = 0 if dist(x,5) > 3 x 270
Let € S. Evidently, B(z,27%) C S}, for every k and hence

P =Y [ e s Sy

k>kKo

=2 /E U@ = y) P * f(Y)dy = F e (2)-

er@o

On account of Lemma 2.3 (b) we obtain |Fs(x)| = |Fy ., (z)] < 27.
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Consider the case when x € Sy \ Spy1 for some £ > kg. Then B(x,27%) C S}, if
ko <k <f—1and B(z,27%)N S = 0 if k > £ + 2. Therefore,

l+1
Fs(x) / Unle — g+ f(y dy+Z/ e = ) )y
+1 ~
= Fy o e—1(x) + kz::e /Ermsk Y (x — y)e * f(y)dy,

where we used the notation from (2.8). By Lemma 2.3 (b) and (2.10) it follows
that |Fg(z)| < c2".

We ﬁnally consider the case when 27%0t1 < dist(z,S) < 3 x 27%°. Then we
have Fg(z fEm Sng Vo (2 — Y) Uy * f(y)dy and the estimate |Fg(z)| < 2" is

1mmed1ate from (2. 10)
The convergence in &’ in (2.34) is established as in the proof of Lemma 2.3. O

Fix ¢ > 1 and let {B; : j € J} be the set of all balls B; = B(¢;, p;/2) such that

j > ¢ and
B(&, ) 0 (., 3“) #0.
By Lemma 2.4 it follows that #J < K and 7~ 'p, < p; < 7p, for j € J. Define
(2.35) k1 := min {k 2R < 4 min {p; 1 j € T U {E}}}.
From this definition and 27%0 < p, we infer
(2.36) 27F1t1 > 8" min{p; 1 j € TU{(}} > 8 2p, >87227F0 — &y < ko+T.
Clearly, from (2.35)
(2.37) B; +2B(0,27%) C B(&;,3p;/4), Vk >k, VjeJU{}
Denote S := UjesB; and S := UjesB; U By = SU By. As in Lemma 2.6 we set
Sp:=S8+2B(0,27%) and Sj:=S+2B(0,27%).
It readily follows from the definition of &y in (2.35) that
(2.38) RO = EN\Uysi B = (BN Sk) \ (B N Sp)  for k> k.
Denote

Fs@i= Y [ inw—nids Sy and

>k

Fg(z):= > / . Uz — )tk * f(y)dy

k>ks

From (2.38) and the fact that S C S it follows that

Fp,(2) = Fg(w) — Fs(@) + 3. / i@ — vy * Fy)dy
ko<k<ky rk
By Lemma 2.6 we get ||Fs|loo < ¢2" and [|Fgl/oc < ¢2". On the other hand from
(2.36) we have k; — kg < 7. We estimate each of the (at most 7) integrals above
using (2.10) to conclude that | Fp,|lcc < 2.
We deal with the convergence in (2.27) and (2.32) as in the proof of Lemma 2.3.
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Clearly, (2.29) follows from the fact that [, 2% (z)dz = 0 for all @ with |a| < K.

Finally, from Lemma 2.4 we have Q, C UjenB, and then (2.31) is immediate
from (2.25) and (2.26). O

We are now prepared to complete the proof of Theorem 2.1. For every ball
B € B, r € Z, provided Q, # 0, we define B* := 7B,

ap(x) == ¢y Y| B*|7YP2 " F(z) and Ap:= cﬁ|B*|1/p2r,
where ¢; > 0 is the constant from (2.30). By (2.28) suppap C B* and by (2.30)
lagllo < e~ B*[~/P277|| Fplle < [B7H/P.

Furthermore, from (2.29) it follows that [, 2%ap(z)dz = 0 if || < n(p~' —1).
Therefore, each ap is an atom for HP.
We set B, := () if Q. = . Now, using the above, (2.23), and Lemma 2.5 we get

F=Y F=> > Fs=> > Apap,

reZ reZ BeB, r€Z BeB,
where the convergence is in &', and

ST sl <ed] o S Bl=e > 2|0 < | £l

reZ BeB, reZ BeB, rez

which is the claimed atomic decomposition of f € HP. Above we used that |B*| =
17B|=7"B|. O

Remark 2.7. The proof of Theorem 2.1 can be considerably simplified and short-
ened if one seeks to establish atomic decomposition of the HP spaces in terms of
q-atoms with p < q < oo rather than co-atoms as in Theorem 2.1, i.e. atoms sat-
isfying ||allpa < |B|Y9YP with q < co rather than ||al|p~ < |B|~YP. We will not
elaborate on this here.
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