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Abstract

The hp-adaptive approximation is formulated as an approximation problem on a full binary
tree T , where for each of the leaves ∆ an order p(∆) ≥ 1 is assigned in such a way that the
sum of all such p(∆) does not exceed N , called complexity of the approximation. The leaves
∆ correspond to the cells of the partition, while p(∆) is the order of the polynomial used
for the local approximation on ∆. Devising an incremental algorithm for near-best adaptive
approximation for the problem of finding the best possible tree T and assignments p(∆) leads
to building a construction that attaches a ghost tree with p(∆) leaves to each leaf ∆ of T with
p(∆) > 1. The resulting full binary tree T that has at most N leaves and can be used as a
proxy of T for assembling hp-adaptive procedures. Under the standard assumptions about the
local errors, we prove that our approximation of complexity N is bounded by 2N−1

N−n+1σn, where
σn, n ≤ N , is the best possible approximation of complexity n.

Keywords: adaptive methods, hp-adaptivity, tree based algorithms, near-best approximation,
instance optimality.
MSC numbers: 41A15, 41A63, 65D15, 65M55, 68Q32, 68W25, 97N50.

1 Introduction

There are two basic approaches to adaptivity when approximating a function on a domain Ω. The
first one considers the current partition of Ω and chooses some of its elements ∆ for refinement.
The tool for local approximation does not change and the improvement of the approximation is
based on decreasing of the size h of the elements. Thus, this is usually called an h-refinement.
The second one considers the same partition of Ω but the order p(∆) of the approximation tool
is increased on some elements ∆, and thus, it is called a p-refinement. The combination of both
approaches results in approximation strategies often referred to as hp-adaptivity. The goal of this
paper is to investigate the hp-adaptivity in very general settings and to introduce a framework for
which one can find a near-optimal algorithm with a reasonable complexity.

In general, adaptive refinement can be linked to building a tree structure. The initial partition
consists of just one element, the domain Ω itself, that we relate to the root R of the tree. Going
forward, subdividing an element of the current partition corresponds to taking a terminal node,
called a leaf of the current tree and attaching to it new leaves that are related to the newly created
smaller elements. While the subdivided element ∆ is no longer an element of the partition, the
corresponding node remains as an internal node of the tree but is no longer a leaf. To simplify

∗This research was supported by the NSF grant DMS 1222390.
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the presentation, from now on we will consider the case of binary subdivision, namely, that ∆ is
subdivided into two smaller elements ∆′ and ∆′′, such that ∆ = ∆′ ∪∆′′ and ∆′ ∩∆′′ is an empty
set or a set of measure zero. We shall call ∆′ and ∆′′ children of ∆ that will be referred as their
parent. The resulting graph will be a full binary tree with a root R and the elements of the current
partition will be identified with the current leaves of the tree. With a slight abuse of the notation,
we will refer to ∆ as both an element of the partition and a node of the binary tree.

For a given tree T we denote the set of its leaves by L(T ). The internal nodes of T also form
a binary tree T\L(T ) but it might not be a full tree, i.e. there might be a parent node with just
one child. We define the complexity N of a full tree to be #L(T ), the number of its leaves. This
conveniently corresponds to the number of elements in the partition of Ω constituted by T .

The local errors at an element ∆ of the partition are denoted by ep(∆), where p = P(∆) is the
order of the polynomial space used in the approximation at ∆. It is important to emphasize that
we want to work with additive quantities and to have that the total error E(T,P(T )) for a given
partition defined by T and the assignments

P(T ) :=
(
P(∆)

)
∆∈L(T )

(1.1)

is defined by

E(T,P(T )) :=
∑

∆∈L(T )

eP(∆)(∆) . (1.2)

In particular, this means that when working with the L2-norm, we define the error to be the square
of the L2-norm of the difference between the function and the approximating polynomial. This
presentation uses very general settings about the error ep(∆), p ≥ 1 only requiring the following
two properties:
(i) subadditivity of the error for the lowest order approximation:

e1(∆) ≥ e1(∆′) + e1(∆′′) , (1.3)

where ∆′ and ∆′′ are the children of ∆;
(ii) reduction of the error when the polynomial order increases

ep(∆) ≥ ep+1(∆) . (1.4)

In some cases it is convenient and often necessary to consider a less demanding variant of (1.3)
known as weak subadditivity:

e1(∆) ≥ c
∑

∆′∈(T∆∩T )

e1(∆′) , (1.5)

where c > 0 is a fixed constant independent of the choice of ∆ or the tree T . In this formula and
everywhere else in the paper T∆ stands for the infinite full binary tree rooted at ∆. It is easy to see
that (1.5) holds with c = 1 in case (1.3) is true. While the proofs presented below can be modified
to use (1.5) instead of (1.3), this will result in additional complications and less favorite constants.
To keep the presentation simple, we choose to use the property (1.3) and refer the reader to [4] for
considerations in full generality in the case of h-adaptivity.

The definition of the best approximation depends on the notion of complexity. Here we set the
complexity of the hp-adaptive approximation by the pair (T,P(T )) to be the sum of orders at all
the elements of the partition

#P(T ) :=
∑

∆∈L(T )

P(∆) . (1.6)
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Given N > 0, the best hp-adaptive approximation of complexity N is then defined by

σN := inf
T

inf
#P(T )≤N

E(T,P(T )) . (1.7)

The aim of this paper is to define an incremental algorithm, similar to the one in [4], that for
given error assignments satisfying (1.3) and (1.4) produces for each N a pair (TN ,P(TN )) of a tree
TN and the corresponding polynomial orders P(TN ) with #P(TN ) = N such that it provides a
near-best hp-adaptive approximation, namely

E(TN ,P(TN )) ≤ C1σc2N . (1.8)

First, we have to define a framework that allows to increase the complexity of the pair (TN ,P(TN ))
by preserving the local distribution of the degrees of freedom and, at the same time, allowing the
flexibility to make substantial changes in (TN+1,P(TN+1)). The idea is to create a tree T with
L(T ) = N leaves, for which TN is a subtree in such a way that for any leaf ∆ ∈ L(TN ) ⊂ T the
number of leaves of T that are descendants of ∆ is equal exactly to the order P(∆). In other words,
at each leaf ∆ ∈ L(TN ) ⊂ T we want to add a “ghost” tree T∆ ∩ T that has exactly P(∆) leaves
and after adding all such trees we will compose the tree T . Of course, the tree T is not uniquely
defined, in general. However, it can carry information how the approximation would look like if we
decide to use lower order polynomials at some location. Given T , for each of the nodes ∆ ∈ T we
define its order by

P(∆) := P(∆, T ) := #
(
L(T ) ∩ T∆

)
. (1.9)

Now, the hp-approximation can be identified with the pair (T , T ) instead of the pair (T,P(T )) and
the same definition (1.2) applies for E(T , T ). It is easy to see that the best approximation from
(1.7) can be expressed as

σN = inf
T :#L(T )≤N

inf
T⊂T

E(T , T ) . (1.10)

This leads to a different approach to finding a near-best approximant, namely, to find a tree TN
with #L(TN ) = N first, and then to examine all possible subtrees T of TN and choose the one
for which the error E(TN , T ) is minimal. This also gives the possibility to define the trees TN
incrementally and by this minimize the computational cost.

Remark 1.1 Note that the inf in the definitions (1.7) and (1.10) is acting on a finite set of possi-
bilities and therefore can be replaced by min.

The strategy of building the tree T is to identify at each step the leaf with the highest potential
to decrease the total error. A straightforward greedy approach, namely to choose the leaf with
the highest local error, is not going to work since a very localized singularity would attract several
consecutive refinements without an (essential) improvement of the total error. In the case of h-
adaptive refinements, one can modify the local errors to account for the depth of the tree in such a
way that the choice for refinement of the leaf with the largest modified local error would result in a
near-best approximation (see [4]). We present the variant of this strategy from [1] and prove some
results about it in Section 2. It is important to note that the h-adaptive algorithm is driven by a
quantity (the modified error) defined at the nodes but completely independent of the current tree.
While this will pave the road to designing a strategy for the hp-adaptivity, it seems that a much
more involved setup is needed. We describe our approach in Section 3 and prove the following
result.
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Theorem 1.2 Let the local errors ep satisfy the conditions (1.3) and (1.4). Then there exists a
constructive incremental algorithm for finding a tree TN starting from T1 = R and for each j ≥ 1
receiving Tj+1 from Tj by adding two children nodes to a leaf of Tj. In addition, for each tree TN
there exists a subtree TN such that the hp-adaptive approximation provided by the pair (TN , TN ) is
near-best, namely,

E(TN , TN ) ≤ 2N − 1

N − n+ 1
σn (1.11)

for any integer n ≤ N . The complexity of the algorithm for obtaining (TN , TN ) is bounded by

O
( ∑

∆∈TN

P(∆, TN )
)

, where P(∆, TN ) is defined by (1.9).

Remark 1.3 The sum
∑

∆∈TN

P(∆, TN ) estimating the complexity of the algorithm varies from

O(N logN) for well balanced trees TN to O(N2) for highly unbalanced ones.

2 Near-Best Results for an h-Refinement Strategy

The setup in the case of h-adaptive approximation is much more simple. In particular, the local
approximations are using the same polynomial space, so we denote the local errors by e(∆). Since
this is the basic approximation, although the orders could be higher, we relate e(∆) to e1(∆) in the
hp-setup and therefore assume that it satisfies the subadditivity property corresponding to (1.3):

e(∆) ≥ e(∆′) + e(∆′′) (2.1)

where ∆′ and ∆′′ are the children of ∆. The global h-error for the tree T is then defined by

Eh(T ) :=
∑

∆∈L(T )

e(∆) (2.2)

and the best N -tern h-adaptive approximation is

σh
N := min

T : #L(T )≤N
Eh(T ) . (2.3)

To build the algorithm for near-best h-adaptive tree approximation, we define the modified errors
ẽ(∆) as follows:

ẽ(R) := e(R) for the root and ẽ(∆) :=
e(∆)ẽ(∆?)

e(∆) + ẽ(∆?)
, (2.4)

where ∆? is the parent of ∆. In case both e(∆) and ẽ(∆?) are zeros, we define ẽ(∆) = 0, as well.
It is sometimes beneficial to use the following equivalent formula for ẽ(∆)

1

ẽ(∆)
=

1

e(∆)
+

1

ẽ(∆?)
. (2.5)

The modified error is independent on the tree and can be used to devise a greedy algorithm
for finding a tree TN that provides a near-best approximation. Define T1 := {R} and receive the
tree TN+1 from TN by subdividing a leaf ∆ ∈ L(TN ) with the largest ẽ(∆) among all leaves from
L(TN ). The following theorem holds.
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Theorem 2.1 Let the local errors e(∆) satisfy the condition (2.1) and the tree TN is received by
applying a greedy refinement strategy with respect to the quantities ẽ(∆) defined by (2.4). Then the
tree TN provides a near-best h-adaptive approximation

Eh(TN ) ≤ N

N − n+ 1
σh
n (2.6)

for any integer n ≤ N . The complexity of the algorithm for obtaining TN is O(N) safe for the
sorting of ẽ(∆) that requires O(N logN) operations.

Remark 2.2 The sorting can be avoided by binning the values of ẽ(∆) into binary bins and choosing
for subdivision any of the ∆ that provides a value for the largest nonempty bin. This will only
increase the constant in (2.6) by 2. In this case the total complexity of the algorithm is O(N).

To prepare for the proof we should make some remarks and prove two lemmas. First, let us
mention that the following quantities are decreasing with respect to N

tN := max
∆∈L(TN )

ẽ(∆) . (2.7)

Indeed, from (2.5) it follows that the the value ẽ(∆) for a node ∆ is smaller than the value ẽ(∆?) for
its parent ∆? and thus max

∆∈L(TN )
ẽ(∆) ≥ max

∆∈L(TN+1)
ẽ(∆) since in the set L(TN+1) two children nodes

replace their parent which is in L(TN ). Next, we consider a general binary tree T (not necessarily
full) and a threshold t such that for all of its leaves ẽ(∆) ≤ t, ∆ ∈ L(T ) and for all other nodes
ẽ(∆) ≥ t, ∆ ∈ (T\L(T )). The following two results hold.

Lemma 2.3 Let t > 0 and T be a general binary tree rooted at R and such that ẽ(∆) ≤ t for all
leaves ∆ ∈ L(T ). Then ∑

∆∈L(T )

e(∆) ≤ (#T )t . (2.8)

Proof. Given a leaf ∆ we set ∆ = ∆(0) and denote by ∆(j+1) the parent of ∆(j), j = 0, 1, ..., `− 1,
where ` is such that ∆(`) = R. Then by (2.5) and ẽ(R) = e(R) we receive

1

ẽ(∆(0))
=

1

e(∆(0))
+

1

ẽ(∆(1))
=

1

e(∆(0))
+

1

e(∆(1))
+

1

ẽ(∆(2))
= ... =

∑̀
j=0

1

e(∆(j))
. (2.9)

Multiplying both parts of the equation by e(∆(0))ẽ(∆(0)) we receive

e(∆(0)) = ẽ(∆(0))
∑̀
j=0

e(∆(0))

e(∆(j))
= ẽ(∆(0))

1 +
∑̀
j=1

e(∆(0))

e(∆(j))

 .

Now denoting by A(∆) the set of ancestors of ∆ = ∆(0) in the tree and using that ẽ(∆) ≤ t, we
have

e(∆) ≤ t

1 +
∑

∆′∈A(∆)

e(∆)

e(∆′)


5



and therefore

∑
∆∈L(T )

e(∆) ≤ t
∑

∆∈L(T )

1 +
∑

∆′∈A(∆)

e(∆)

e(∆′)

 = t

#L(T ) +
∑

∆′∈(T\L(T ))

∑
∆∈(T∆′∩L(T ))

e(∆)

e(∆′)

 ,

(2.10)
where in the derivation of the last expression we change the order of summation and take into
account that the set of all leaves of T to which ∆′ is an ancestor is exactly T∆′ ∩ L(T ). Now we
use that (1.3) yields (1.5) with c = 1 to conclude that each of the fractions in the sum over ∆′

does not exceed 1. Thus, the sum is at most #(T\L(T )) which proves the lemma since L(T ) ⊂ T .

Lemma 2.4 Let t > 0, ∇ be a node in a tree T for which e and ẽ are defined, and let T be a
general binary subtree of T rooted at ∇ and such that ẽ(∆) ≥ t for all nodes ∆ ∈ T . Then

e(∇) ≥ (#T )t . (2.11)

Proof. For any node ∆ of T we have

e(∆) ≥ ẽ(∆) ≥ t .

This gives the estimate in the case #T = 1 and ∆ = ∇. If, in addition, ∆ has a parent node
∆? ∈ T , then from (2.5) we get

e(∆) ≥ t
(
e(∆)

e(∆)
+

e(∆)

ẽ(∆?)

)
= t

(
1 +

e(∆)

ẽ(∆?)

)
. (2.12)

We are going to prove by induction that if for a node ∆′ ∈ T the tree T∆′ rooted at ∆′ has k′ nodes
in T , then

e(∆′) ≥ tk′ (2.13)

and in case ∆′ has a parent ∆ ∈ T

e(∆′) ≥ t
(
k′ +

e(∆′)

ẽ(∆)

)
. (2.14)

Assume that ∆ ∈ T has children ∆′ ∈ T and ∆′′ ∈ T such that the trees T∆′ and T∆′′ have k′ and
k′′ nodes in T , correspondingly. Then, the tree T∆ rooted at ∆ has k := k′ + k′′ + 1 nodes in T .
Let (2.14) holds for both ∆′ and ∆′′. Adding the corresponding inequalities together gives

e(∆′) + e(∆′′) ≥ t
(
k′ + k′′ +

e(∆′) + e(∆′′)

ẽ(∆)

)
. (2.15)

Multiplying both sides by e(∆)
e(∆′)+e(∆′′) ≥ 1 we receive

e(∆) ≥ t
(
k′ + k′′ +

e(∆)

ẽ(∆)

)
≥ t(k′ + k′′ + 1) = tk (2.16)
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to establish (2.13) for ∆ and k. If ∆ has a parent ∆?, then we use (2.4) to get

e(∆) ≥ t
(
k′ + k′′ +

e(∆)

e(∆)
+

e(∆)

ẽ(∆?)

)
= t

(
k +

e(∆)

ẽ(∆?)

)
(2.17)

to establish (2.14) for ∆ and k. In case ∆ ∈ T has just one child ∆′ ∈ T , the considerations are
the same as above, setting k′′ = 0 and e(∆′′) = 0 where appropriate. The induction argument
completes the proof.

Proof of Theorem 2.1. Let T ?
n be a tree of best approximation for n, so Eh(T ?

n ) = σh
n. We

want to compare the trees TN and T ?
n . If (T ?

n \L(T ?
n )) ⊂ (TN\L(TN )), then T ?

n ⊂ TN and therefore
Eh(TN ) ≤ Eh(T ?

n ). So, we can assume that there is at least one internal node of T ?
n that is not an

internal node of TN . We use Lemma 2.4 to estimate Eh(T ?
n ) = σh

n from below in terms of tN from
(2.6). To this end we consider the set F of all nodes in the trees T∇ steming from leaves ∇ ∈ L(T ?

n )
and having as nodes only the nodes from TN\L(TN ). Of course, some of the trees T∇ could be
empty. The total number of nodes from these trees is #F ≥ (N − 1)− (n− 2) = N − n+ 1 since
at list one node from T ?

n \L(T ?
n ) is not in TN\L(TN ). The application of (2.11) gives

σh
n = Eh(T ?

n ) =
∑

∇∈L(T ?
n )

e(∇) ≥
∑

∇∈L(T ?
n )

(#T∇)tN = (#F )tN ≥ (N − n+ 1)tN . (2.18)

To estimate Eh(TN ) from above we divide the set of its leaves into two parts: the leaves that are
nodes in (T ?

n \L(T ?
n )) and the rest of them which combined errors can be estimated by Eh(T ?

n ) = σh
n

Eh(TN ) =
∑

∆∈L(TN )

e(∆) ≤ σh
n +

∑
∆∈[L(TN )∩(T ?

n \L(T ?
n ))]

e(∆) . (2.19)

We apply Lemma 2.3 for the minimal tree T with leaves L(TN ) ∩ (T ?
n \L(T ?

n )) to receive∑
∆∈[L(TN )∩(T ?

n \L(T ?
n ))]

e(∆) ≤ #(T ?
n \L(T ?

n )) tN ≤
n− 1

N − n+ 1
σh
n , (2.20)

where we have used that T ⊂ (T ?
n \L(T ?

n )) and (2.18). Finally, the combination of (2.19) and (2.20)
completes the proof of (2.6).

3 Adaptive Strategy for hp-Refinements

Before formulating our hp-refinement strategy, we describe a recursive algorithm to find the subtree
TN for a given TN . We define the local hp-errors E(∆) = E(∆, TN ) starting with

E(∆) := e1(∆) for ∆ ∈ L(TN ) .

If E(∆′) and E(∆′′) are already defined for the children ∆′ and ∆′′ of ∆, we set

E(∆) := min
{
E(∆′) + E(∆′′), eP(∆)(∆)

}
, (3.1)
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where the order P(∆) = P(∆, TN ) is given by (1.9). To receive the tree TN we start with TN and
trim it at ∆ every time E(∆) = eP(∆)(∆) in (3.1). In this way TN becomes the minimal tree for
which E(∆) = eP(∆)(∆) at all its leaves.

An important observation about the dependence of quantities E(∆) = E(∆, TN ) from TN is
that it is based only on changes in the subtree rooted at ∆. Therefore, E(∆, TN ) will change with
the increasing of N only if the quantity P(∆, TN ) changes. It is then convenient to consider the
notation Ej(∆) independently of TN setting that Ej(∆) := E(∆, TN ) whenever j = P(∆, TN ).

As in the h-refinement case, we define via (2.4) the quantities ẽ(∆) based on the local errors
e(∆) = e1(∆). These quantities are independent of TN and give information about the local error
at the node ∆ only in the case ∆ is a leaf of TN . To extend our ability to monitor the local
error behavior in the process of finding a good hp-adaptive approximation, we define modified local
hp-errors Ẽ(∆) as follows

Ẽ1(∆) := ẽ(∆) and Ẽj(∆) :=
Ej(∆)Ẽj−1(∆)

Ej(∆) + Ẽj−1(∆)
for j > 1 . (3.2)

In case both Ej(∆) and Ẽj−1(∆) are zeros, we define Ẽj(∆) := 0 as well. For a fixed tree TN we
set j = P(∆, TN ) and consider Ẽ(∆) := Ẽ(∆, TN ) := ẼP(∆,TN )(∆).

Remark 3.1 The independence of the quantities Ej(∆) from the tree TN is understood in the sense
that the sequence T1, T2, T3, ... is predetermined by the local errors ep(∆) and a given hp-refinement
strategy. If a different refinement strategy is applied, then it may result in different values of
the Ej(∆). This is one of the issues that makes the analysis of the hp-adaptive algorithm more
complicated than the one from Section 2.

The definition (3.2) of Ẽj(∆) and (2.9) used with the set of ancestors A(∆) give

1

Ẽj(∆)
=

1

Ej(∆)
+

1

Ẽj−1(∆)
=

j∑
k=2

1

Ek(∆)
+

1

Ẽ1(∆)
=

j∑
k=1

1

Ek(∆)
+

∑
∆′∈A(∆)

1

e(∆′)
. (3.3)

Next, we introduce two functions q : TN → R+ and s : TN → L(TN ) that are critical for defining
the hp-adaptive algorithm. For the leaves ∆ ∈ L(T ) define

q(∆) := ẽ(∆) = Ẽ1(∆) and s(∆) := ∆ . (3.4)

Recursively, for a node ∆ ∈ TN\L(TN ) with children ∆′ and ∆′′, for which q and s have been
determined, define

q(∆) := min
{

max{q(∆′), q(∆′′)}, ẼP(∆)(∆)
}

and s(∆) := s(argmax{q(∆′), q(∆′′)}) .
(3.5)

The principal algorithm for incrementally growing the tree TN is the following:

• for N = 1 set TN := {R};

• while N < Nmax : for the tree TN subdivide the leaf s(R) to form TN+1 and set N := N + 1 .
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Before analyzing the near-best performance of the sequence (TN , TN ), we first give a detail descrip-
tion of the algorithm to allow to account for its complexity.

hp-Algorithm:

(i) set N = 1, T1 := {R}, ẽ(R) := e(R), E1(R) := e(R), Ẽ1(R) := ẽ(R), q(R) := ẽ(R),
s(R) := R;

(ii) expand the current tree TN to TN+1 by subdividing ∆N := s(R) and adding two children
nodes ∆′N and ∆′′N to it;

(iii) for ∇ = ∆′N and ∇ = ∆′′N calculate the quantities: ẽ(∇) := e(∇)ẽ(∆)
e(∇)+ẽ(∆) , E1(∇) := e(∇),

Ẽ1(∇) := ẽ(∇), q(∇) := ẽ(∇), s(∇) := ∇;

(iv) set ∆ := ∆N ;

(v) set N := N + 1; exit if N ≥ Nmax

(vi) set P(∆) := P(∆) + 1 and calculate eP(∆)(∆);

(vii) set ∆′ and ∆′′ to be the children of ∆;

(viii) set EP(∆)(∆) := min{EP(∆′)(∆
′) + EP(∆′′)(∆

′′) , eP(∆)(∆)};

(ix) set ẼP(∆)(∆) :=
EP(∆)(∆)ẼP(∆)−1(∆)

EP(∆)(∆)+ẼP(∆)−1(∆)
;

(x) set D := argmax{q(∆′), q(∆′′)} and q(∆) := min
{
q(D), ẼP(∆)(∆)

}
, s(∆) := s(D);

(xi) if ∆ 6= R, replace ∆ with its parent and go to (vi);

(xii) go to (ii);

Lemma 3.2 To obtain (TN , TN ) the hp-Algorithm performs
∑

∆∈TN

P(∆, TN ) steps.

Proof. In analysis of the algorithm one can see that P(∆, TN+1) = P(∆, TN ) + 1 for all nodes ∆,
for which the quantities E, Ẽ, q, and s are updated. to be substantiated a bit more

Theorem 3.3 The pair (TN , TN ) produced by the hp-Algorithm provides near-best approximation
and satisfies (1.11) for any positive integer n ≤ N .

Proof. Let the pair (T ?
n ,P?) be the one providing the optimal error of complexity n in (1.7) and

such that σn = E(T ?
n ,P?). We define the threshold parameter qN := q(R) for the tree TN . From

the fact that the quantities involved in the definition of q(∆) decrease in the process of growing
the trees Tk it follows that the quantities qk are decreasing with k.

To estimate σn from below we consider the leaves ∇ ∈ L(T ?
n) and their orders P?(∇). In case

P(∇, TN ) ≤ P?(∇) we ignore the contribution of eP?(∇)(∇) to the E(T ?
n ,P?). If P(∇, TN ) > P?(∇),
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we consider the quantity qk ≥ qN at the stage Tk of growing the tree TN at which the last decision
to subdivide a descendent of ∇ was made. From the definitions of q and s it follows that at this
stage q(∇) ≥ qk and therefore Ẽj(∇) ≥ q(∇) ≥ qN for j = P(∇, TN ) − 1. From the intermediate
relation in (3.3) we have

1

Ẽj(∇)
=

j∑
i=P?(∇)+1

1

Ei(∇)
+

1

ẼP?(∇)(∇)
.

Multiplying by Ẽj(∇)EP?(∇)(∇) and taking into account that quantities Ei(∇) are monotone de-

creasing with i and that Ẽi(∇) ≤ Ei(∇), we receive

EP?(∇)(∇) = Ẽj(∇)

 j∑
i=P?(∇)+1

EP?(∇)(∇)

Ei(∇)
+

EP?(∇)(∇)

ẼP?(∇)(∇)

 ≥ qN (j − P?(∇) + 1)

and therefore
eP?(∇)(∇) ≥ EP?(∇)(∇) ≥ qN (P(∇, TN )− P?(∇))+ , (3.6)

where we have used the standard notation (x)+ := max{x, 0}. Before applying this inequality for
the estimate of σn, we exclude the case that P(∇, TN ) ≥ P?(∇) for all ∇ ∈ L(T ?

n) since then
EP(∇,TN ) ≤ EP?(∇) ≤ eP?(∇)(∇) and therefore E(TN , TN ) ≤ E(T ?

n ,P?) = σn which gives (1.11).
For notational purposes only, we set P?(∇) := 1 for all ∇ ∈ (T ?

n\L(T ?
n)) to derive∑

∇∈L(T ?
n)

(P(∇, TN )− P?(∇))+ =
∑

∇∈L(T ?
n∩TN )

(P(∇, TN )− P?(∇))+

>
∑

∇∈L(T ?
n∩TN )

(P(∇, TN )− P?(∇)) = N −
∑

∇∈L(T ?
n∩TN )

P?(∇) ≥ N − n , (3.7)

where we have used that (P(∇, TN )−P?(∇))+ = 0 in case ∇ is in the symmetric difference of the
sets L(T ?

n) and L(T ?
n ∩ TN ), as well as∑

∇∈L(T ?
n∩TN )

P?(∇) ≤
∑

∇∈L(T ?
n)

P?(∇) = n .

Now the combination of (3.6) and (3.7) gives

σn =
∑

∇∈L(T ?
n)

eP?(∇)(∇) ≥ qN
∑

∇∈L(T ?
n)

(P(∇, TN )− P?(∇))+ ≥ qN (N − n+ 1) . (3.8)

To obtain an estimate of E(TN , TN ) from above, we consider the function q(∆) for the tree TN
and denote by L the set of nodes ∆ for which q(∆) = ẼP(∆) in (3.5). Let Q be the maximal subtree

(not necessarily full) of TN for which L ∩ Q = L(Q). Then q(∆) = ẼP(∆) for all leaves ∆ ∈ L(Q).
From the procedure of defining q it follows that for all these leaves q(∆) ≤ q(R) = qN . To estimate
EP(∆) for ∆ ∈ L(Q) we multiply both sides of (3.3) by ẼP(∆)EP(∆) to receive for j = P(∆, TN )

Ej(∆) = Ẽj(∆)

 j∑
k=1

Ej(∆)

Ek(∆)
+

∑
∆′∈A(∆)

Ej(∆)

e(∆′)

 ≤ qN
j +

∑
∆′∈A(∆)

e(∆)

e(∆′)

 (3.9)
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using that Ek(∆) are monotone decreasing and E1(∆) = e(∆). Utilizing that TN is the optimal
subtree in terms of total hp-error the inequality (3.9) gives

E(TN , TN ) ≤ E(TN ,Q) =
∑

∆∈L(Q)

EP(∆,TN )(∆) ≤ qN

 ∑
∆∈L(Q)

P(∆, TN ) +
∑

∆∈L(Q)

∑
∆′∈A(∆)

e(∆)

e(∆′)

 .

Applying the same estimate as in (2.10) in Lemma 2.3 to the double sum gives

E(TN , TN ) ≤ qN (N −#L(Q) + #Q) = qN (N + #L(Q)− 1) ≤ qN (2N − 1) , (3.10)

which concludes the proof of (1.11).

Theorem 1.2 now follows from Theorem 3.3 and Lemma 3.2.

Remark 3.4 The estimate (3.10) is a bit rough since it was derived treating in the same way all
possible subtrees Q including the worst case scenario Q = TN . However, in this particular case
one could derive a much better estimate using that the p-option was never taken in the calculation
of the quantities q and applying an argument similar to the one for (2.19). Further exploration of
such ideas and thorough analysis of the relative placement of the trees Q and T ?

n will result in a
slightly better constant in (1.11) but would complicate significantly the proof. Since the advances
are marginal, we have chosen clarity.

Still to come:
• adding a paragraph or two about different strategies for hp-adaptivity and their realizations
• adding citations
• polishing of the text

Acknowledgment: The author wish to thank Ricardo Nochetto for the fruitful discussions and
the various valuable suggestions.
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