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Abstract Gravimetric quantities are commonly repre-

sented in terms of high degree surface or solid spherical

harmonics. After EGM2008, such expansions routinely

extend to spherical harmonic degree 2190, which makes

the computation of gravimetric quantities at a large

number of arbitrarily scattered points in space using

harmonic synthesis, a very computationally demanding

process. We present here the development of an algo-

rithm and its associated software for the efficient and

precise evaluation of gravimetric quantities, represented

in high degree solid spherical harmonics, at arbitrarily

scattered points in the space exterior to the surface of

the Earth. The new algorithm is based on representa-

tion of the quantities of interest in solid ellipsoidal har-

monics and application of the tensor product trigono-

metric needlets. A FORTRAN implementation of this

algorithm has been developed and extensively tested.

The capabilities of the code are demonstrated using as

examples the disturbing potential T , height anomaly

ζ, gravity anomaly ∆g, gravity disturbance δg, north-

south deflection of the vertical ξ, east-west deflection of

the vertical η, and the second radial derivative Trr of

the disturbing potential. For the range from the surface

of the Earth up to 544 kilometers above that surface the
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current version of the software runs on a standard PC

at speeds between 20,000 and 40,000 point evaluations

per second, depending on the gravimetric quantity be-

ing evaluated, while the relative error does not exceed

10−6 and the memory (RAM) use is 9.3 GB.

Keywords solid spherical harmonics · ellipsoidal

harmonics · evaluation at scattered points · needlets ·
fast computation

1 Introduction

Global gravitational models (GGM) are mathematical

approximations of the external gravitational potential

of an attracting body, like the Earth. It is essential

that such models would permit the rigorous evalua-

tion of quantities related to that potential (gravimet-

ric quantities), anywhere on or above the surface of the

body, given the position of the evaluation point (Pavlis,

2011). Although geodesists have variously considered

and studied the representation of the gravitational po-

tential using point masses (Sünkel, 1981, 1983), finite el-

ement methods (Meissl, 1981; Baker, 1988) and splines

(Sünkel, 1984; Jekeli, 2005), these approaches have seen

only limited application in the representation of (es-

pecially) the ”static” (i.e., the time-averaged) gravita-

tional field of the Earth. Spherical harmonic functions

have prevailed as the standard form used for the repre-

sentation of the gravitational potential globally, from

the very early days of global determinations, to the

present. Indeed, the set of coefficients of a spherical

harmonic expansion of the gravitational potential has

become pretty much synonymous to a GGM.

The evaluation of model-implied gravimetric quan-

tities at points residing over certain geometric surfaces,
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like the surface of a sphere or of an ellipsoid of revo-

lution, can be done efficiently, even for large number

of points, by interpolating from a precomputed grid

of these quantities. The formation of the required grid

can be done very efficiently, using computational meth-

ods like those of Rizos (1979) and Colombo (1981).

However, the computation of model-implied gravimet-

ric quantities over a large number of points that are

randomly scattered in the 3-dimensional space on or

above the surface of the Earth is considerably more

complicated, essentially due to the fact that the radial

distances of such points vary randomly. There are sev-

eral types of applications requiring the evaluation of

various gravimetric quantities from a high resolution

GGM, over large numbers of points that are randomly

scattered in 3-dimensional space. Such point sets may

be located on or close to the Earth’s topography, on

the trajectory of an airplane or a missile, or on the or-

bit of an artificial satellite. The gravimetric quantities

required over such point sets depend on the particu-

lar application, and include height anomalies, gravity

anomalies, gravity disturbances, deflections of the ver-

tical, and one or more of the components of the gravi-

tational tensor. Although such evaluation can be done

rigorously using point-wise harmonic synthesis (Holmes

and Pavlis, 2008), this requires significant computa-

tional effort, especially when the maximum degree and

order of the gravitational model is very high (e.g., ex-

ceeds 2000), as is the case after the development and

release of the EGM2008 model that extends to degree

2190 (Pavlis et al., 2012).

To address this problem, Rapp (1997) used a Taylor

series approach, truncated to the linear gradient term,

which was deemed adequate for gravitational models

complete to degree and order 360. Hirt (2012) used

Taylor expansion up to order 3, Hirt and Kuhn (2012)

increased the order to 6, while Balmino at al. (2012)

studied the Taylor expansion up to order 60. Bucha

and Janák (2014) also studied the expansion up to high

orders, and presented software for spherical harmonic

synthesis at points residing “horizontally” over regular

grids (latitude, longitude), whose “vertical” coordinate

traces an irregular surface (e.g., the topography). Their

publicly available software implements the algorithms

developed by Fukushima (2012) for the numerical com-

putation of spherical harmonics of arbitrary degree and

order by extending the exponent of floating point num-

bers, and is independent of the harmonic synthesis code

that Holmes and Pavlis (2008) also made publicly avail-

able, thus enabling inter-comparison of results. Hirt et

al. (2016) used the Bucha and Janák (2014) software

for expansions to degree and order 21,600, over a reg-

ular horizontal grid that traces vertically the topogra-

phy. Moazezi et al. (2016) presented another approach

for fast and efficient synthesis over randomly scattered

points, both horizontally and vertically. Eshagh and

Abdollahzadeh (2010) presented a semi-vectorization

technique for harmonic analysis and synthesis of gravity

gradient values residing on regular grids on the sphere.

Eshagh and Abdollahzadeh (2012) also presented the

irregular semi-vectorization technique for the efficient

synthesis of gravity gradients on an elevation model

(i.e., again over a regular horizontal grid that traces

vertically the topography). In these papers the evalua-

tion points are located at (irregular) surfaces approx-

imating the Earth topography, which actually reduces

the evaluation to a combination as Taylor series of a

few 2-dimensional problems.

There are several other methods, known as ’non-

equispaced FFT’, for fast evaluation at many points on

a sphere of quantities represented in surface spherical

harmonics using their coefficients. For example, such

methods are developed in (Mohlenkamp, 1999; Kunis

and Potts, 2003; Reuter, Ratner and Seideman, 2009;

Seljebotn, 2012; Tygert, 2010). For more details, see the

introduction in (Ivanov and Petrushev, 2015).

This article presents an alternative approach to ad-

dress the problem of precise and efficient evaluation of

model-implied gravimetric quantities over a large num-

ber of points that are randomly scattered in the 3-

dimensional space on or above the surface of the Earth,

from a GGM that extends to very high degree. Our ap-

proach was developed with economy of computer mem-

ory usage, as well as computational speed in mind, and

was tested in the evaluation of the following gravimetric

quantities:

– Disturbing potential T

– Height anomaly ζ

– Gravity anomaly ∆g

– Gravity disturbance δg

– North-south deflection of the vertical ξ

– East-west deflection of the vertical η

– Second radial derivative of the disturbing potential

Trr.

In future versions of our software we may include addi-

tional gravimetric quantities (e.g., the elements of the

full gravitational tensor) as well as quantities related to

the Earth’s magnetic field.

In Global Gravitational Models like EGM2008 (Pavlis

et al., 2012) all these gravimetric quantities are repre-

sented in solid spherical harmonics extending to degree

2190. Note that most of these quantities are not har-

monic functions but can be represented as the product

of a slowly varying smooth function κ and a high degree

harmonic function F (or a sum of such products). More
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explicitly we are interested in fast evaluation of quan-

tities G that can be represented in geocentric spherical

coordinates (r, θ, λ), where r is geocentric radial dis-

tance, θ is the geocentric co-latitude (900 minus geo-

centric latitude), and λ is longitude, in the form:

G(r, θ, λ) = κ(r, θ)F (r, θ, λ), (1)

where

F (r, θ, λ) =

N∑
n=0

(a
r

)n+1

×
n∑

m=0

(ānm cosmλ+ b̄nm sinmλ)P̄nm(cos θ) (2)

and κ(r, θ) is an easy to compute smooth function,

which means that κ(r, θ) can be approximated with

high accuracy (e.g. 10−9) from low degree (e.g. de-

gree ≤ 10) solid spherical harmonics. Here N = 2190,

a is a scaling factor associated with the coefficients

{ānm, b̄nm} that is usually chosen to be numerically

equal to the semi-major axis of the adopted reference el-

lipsoid, {P̄nm} are the fully-normalized associated Leg-

endre functions, and {ānm, b̄nm} are known coefficients.

Recall that

P̄nm(x) = qnm(1− x2)m/2
dm

dxm
Pn(x),

where Pn is the usual nth degree Legendre polynomial

and

qn0 =
√

2n+ 1;

qnm =

√
2(2n+ 1)

(n−m)!

(n+m)!
, m = 1, . . . , n.

The problem comes down to fast evaluation of prod-

ucts κ(r, θ)F (r, θ, λ) as in (1)–(2) given the coefficients

{ānm, b̄nm} of F (r, θ, λ) at arbitrary (scattered) points

in the space on or above the surface of the Earth with

prescribed precision, measured as relative or absolute

error.

There is a more or less “standard” algorithm that is

utilized by the HARMONIC SYNTH software (Holmes

and Pavlis, 2008) and made available by NGA at

http://earth-info.nga.mil/GandG/wgs84/

gravitymod/new_egm/new_egm.html

and whose function is documented in

http://earth-info.nga.mil/GandG/wgs84/

gravitymod/new_egm/README.txt.

This method proceeds by computing directly the values

of the quantity of interest from its spherical harmonic

coefficients by utilization of three term recurrences in

stable directions for computing the values of the as-

sociated Legendre functions at many points. Here the

difficulty stems from the fact that there are very few

stable algorithms for accurate evaluation of the associ-

ated Legendre functions and all of them have to over-

come underflow or overflow for degrees above 1000 or so

(the HARMONIC SYNTH software can handle expan-

sions of degree and order up to 2700). A big advantage

of this method over other methods is that it can be ap-

plied for evaluation of quantities represented in surface

or solid spherical harmonics. Its main drawback is that

it is very slow and practically unusable for evaluation

at many scattered points. For instance its implementa-

tion on a regular PC computes at most 50 values per

second. This means that it takes an hour to compute

180,000 values.

Our goal is to develop an accurate stable algorithm

for evaluation of gravimetric quantities at arbitrary scat-

tered points in the space above the surface of the Earth

that can perform at the highest possible speed. To this

end we propose here a method that proceeds in two

steps:

Step 1. Given a function G(r, θ, λ) as in (1)–(2) with

its coefficients {ānm, b̄nm} it evaluates G at all points of

regular grids Xj on a carefully selected family of con-

focal ellipsoids with the first ellipsoid positioned just

under the geoid and the rest at certain distances above

the geoid (see e.g. Tables 3 and 4).

Step 2. Given the values of G on regular grids Xj
on these confocal ellipsoids, it evaluates G at arbitrary

(scattered) points in the external space with prescribed

accuracy.

For Step 1 we first convert representation (2) from

solid spherical harmonics to solid ellipsoidal harmon-

ics and then use the standard method mentioned in

(i) above in combination with Fast Fourier Transform

(FFT). This method is sufficiently efficient when com-

puting the values of quantities at regular grid points.

Step 1 is a pre-computational step and the computation

time requirements for its execution are not critical.

Our realization of Step 2 relies on the application of

tensor product trigonometric needlets. Usually the term

“needlets” is used to denote highly localized band lim-

ited kernels on the unit sphere that reproduce spherical

harmonics of certain degrees. These are also zonal (ra-

dial) functions that have the form of needles, which is

the reason for calling them “needlets”. For more details,

see (Ivanov and Petrushev, 2015).

In this article we utilize products of univariate trigono-

metric needlets. Our method is based on the fact that

ellipsoidal harmonics can naturally be extended as bi-

variate trigonometric polynomials in ellipsoidal coordi-

nates, see §3.4.1. The trigonometric needlets are kernels
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of the form

KN (x) = 1 + 2
∑

1≤n<(1+τ)N

φ
( n
N

)
cosnx,

where φ is an infinitely differentiable function on [0,∞)

(φ ∈ C∞[0,∞)) such that φ(t) = 1 on [0, 1] and φ(t) =

0 on [1 + τ,∞) for some τ > 0. Clearly, the integral

operator with kernel KN (x−y) reproduces the trigono-

metric polynomials of degree N (see (25)) and, there-

fore, tensor products of such kernels reproduce trigono-

metric polynomials in two variables. Furthermore, after

discretization of the respective operator by a cubature

formula, using regular grid points, and truncation (see

(27)) it becomes an excellent tool for approximation of

bi-variate trigonometric polynomials.

The superb localization of the kernels KN (x) around

x = 0 (see (26)) plays a decisive role in the application

of the trigonometric needlets to fast evaluation of quan-

tities represented in solid spherical or ellipsoidal har-

monics. For a detailed account of trigonometric needlets

we refer the reader to the article (Ivanov and Petrushev,

2016), see also §3.4.1 below.

The value of the quantityG to be evaluated at an ar-

bitrary point in the external space is computed by using

tensor product trigonometric needlets at appropriate

points on ellipsoids near that point and an appropriate

polynomial interpolation in the ellipsoidal surface nor-

mal direction. A detailed description of this method is

given in §3 below.

The testing of the software realization of our method

shows that in the range from the geoid up to 544 kilome-

ters above that surface our code runs for the gravimetric

quantities previously listed on a standard PC at speeds

between 20,000 and 40,000 point evaluations per sec-

ond, while the relative error does not exceed 10−6 and

the memory (RAM) use per quantity is 9.3 Gigabytes

(GB), see §6.

The key to the success of our method is the fact that

the desired accuracy can be achieved by using rather

sparse grid points on a limited number of ellipsoids (38

ellipsoids for T and ζ, 53 for ∆g and δg, 54 for ξ, and

55 for η and Trr) due to the efficiency of the tensor

product trigonometric needlets.

The application of our needlet based algorithm for

fast and precise evaluation of quantities represented in

solid spherical harmonics is not limited to Gravitational

modeling. It can be used with equal success in Geomag-

netism and other areas where quantities are represented

in high degree spherical or ellipsoid harmonics.

2 Gravimetric quantities represented in solid

spherical harmonics

In this section we describe in detail the gravimetric

quantities that our algorithm and software deal with.

All of them will be represented as a product just as in

(1)–(2) or a sum of such products. We will also derive

nonsingular representations for the deflections of the

vertical, which lead to stable algorithms.

2.1 Disturbing potential and height anomaly

We begin with the disturbing potential T , which we rep-

resent in geocentric spherical coordinates by (see also

(Pavlis et al., 2012, equation 3))

T (r, θ, λ) =
GM
a

N∑
n=2

(a
r

)n+1

×
n∑

m=0

(c̄nm cosmλ+ s̄nm sinmλ)P̄nm(cos θ),

where GM is the geocentric gravitational constant (uni-

versal gravitational constant times the Earth’s mass),

a is as in (2), and c̄nm, s̄nm are the fully-normalized

spherical harmonic coefficients of T . The coefficients

c̄nm, s̄nm are computed from the EGM2008 coefficients

of the file EGM2008_to2190_TideFree, after subtrac-

tion of the even degree zonal terms (to degree 20) of

the ellipsoidal (reference) gravitational field, from the

corresponding EGM2008 coefficients.

In this case the product representation (1) takes the

form

T (r, θ, λ) = κ(r, θ)F (r, θ, λ),

where κ(r, θ) = 1 and F (r, θ, λ) is as in (2) with coeffi-

cients

ānm =
GM
a

c̄nm, b̄nm =
GM
a

s̄nm. (3)

The height anomaly ζ is defined (Heiskanen and

Moritz, 1967, equation (8-10)) by

ζ =
T

γ
,

where γ = γ(r, θ) is the normal gravity. Thus it has a

representation as in (1)–(2) with (3), κ(r, θ) = 1/γ(r, θ)

and F (r, θ, λ) = T (r, θ, λ).
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2.2 Gravity anomaly and gravity disturbance

The spherically approximated gravity anomaly

∆g = −∂T
∂r
− 2

r
T (Heiskanen and Moritz, 1967, equa-

tion (2-154)) is represented just as in (1)–(2) with

G = ∆g and

κ(r, θ) =
a

r
, ānm =

GM
a2

(n− 1)c̄nm,

b̄nm =
GM
a2

(n− 1)s̄nm.

The gravity disturbance δg = −∂T
∂r

(Heiskanen and

Moritz, 1967, equation (2-153)) is also represented as

in (1)–(2) with G = δg and

κ(r, θ) =
a

r
, ānm =

GM
a2

(n+ 1)c̄nm,

b̄nm =
GM
a2

(n+ 1)s̄nm.

2.3 The second radial derivative of the disturbing

potential

The second order radial derivative of the disturbing po-

tential Trr =
∂2T

∂r2
is also represented as in (1)–(2) with

G = Trr and

κ =
(a
r

)2
, ānm =

GM
a3

(n+ 1)(n+ 2)c̄nm,

b̄nm =
GM
a3

(n+ 1)(n+ 2)s̄nm.

Note that Trr is the most challenging gravimetric quan-

tity (out of those considered in this article) to evaluate

due to its very rich high-frequency content, which is

reflected in the fact that its coefficients are amplified

by terms proportional to the square of the degree, com-

pared to the corresponding coefficients of the disturbing

potential.

We next develop stable representations for the de-

flections of the vertical that, to the best of our knowl-

edge, are new.

2.4 Stable representations of the north-south

deflection of the vertical

The spherically approximated north-south deflection of

the vertical ξ is defined by ξ =
1

rγ

∂T

∂θ
, where as before

γ is the normal gravity (see also Heiskanen and Moritz,

1967, page 235).

In geodesy it is common to use the derivative rep-

resentation

(1− x2)
dP̄nm(x)

dx

=

√
(n2 −m2)(2n+ 1)

2n− 1
P̄n−1,m(x)− nxP̄nm(x), (4)

which implies a representation of the form

ξ(r, θ, λ) = κ(r, θ)
F ?1 (r, θ, λ)r + F ?2 (r, θ, λ) cos θ

sin θ
(5)

where κ(r, θ) =
a

rγ(r, θ)
and F ?1 , F

?
2 are harmonic ex-

pansions. This representation of the singular at the

poles function ξ is computationally unstable due to the

sin θ term in the denominator.

To overcome the above instability we employ the

representations

√
1− x2 dP̄nm(x)

dx
=

√
(n−m)(n+m+ 1)

2
P̄n,m+1(x)

−
√

(1 + δ0,m−1)(n+m)(n−m+ 1)

2
P̄n,m−1(x),

1 ≤ m ≤ n;n ∈ N; (6)

√
1− x2 dP̄n0(x)

dx
=

√
n(n+ 1)

2
P̄n,1(x), n ∈ N; (7)

where δk,` is the Kroneker symbol, that is δk,` = 0 if

k 6= ` and δk,` = 1 if k = `. These identities are de-

rived from recurrences (15), (17), (19) in (Erdelyi et

al., 1953, §3.8). In the geophysics literature representa-

tions (6)–(7) are sometimes attributed to (Bosch, 2000)

or to (Eshagh, 2008, Eq. 18).

Identities (6)–(7) along with the standard formulas

cosmλ = cos(m± 1)λ cosλ± sin(m± 1)λ sinλ,

sinmλ = sin(m± 1)λ cosλ∓ cos(m± 1)λ sinλ,
(8)

lead to the representation

ξ(r, θ, λ) = κ(r, θ) (F1(r, θ, λ) cosλ+ F2(r, θ, λ) sinλ) ,

(9)

where for j = 1, 2

Fj(r, θ, λ) =
GM
a2

N∑
n=2

(a
r

)n+1

×
n∑

m=0

(cjnm cosmλ+ sjnm sinmλ)P̄nm(cos θ) (10)

and κ(r, θ) is as above; the coefficients cjnm, sjnm, j =

1, 2, are given in Table 1. Representation (9)–(10) could
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c1n,m =


1√
2

√
n(n+ 1)c̄n,1, for m = 0;

1
2

√
(n− 1)(n+ 2)c̄n,2 − 1√

2

√
n(n+ 1)c̄n,0, for m = 1;

1
2

√
(n−m)(n+m+ 1)c̄n,m+1 − 1

2

√
(n−m+ 1)(n+m)c̄n,m−1, for 2 ≤ m ≤ n;

s1n,m =


0, for m = 0;
1
2

√
(n− 1)(n+ 2)s̄n,2, for m = 1;

1
2

√
(n−m)(n+m+ 1)s̄n,m+1 − 1

2

√
(n−m+ 1)(n+m)s̄n,m−1, for 2 ≤ m ≤ n;

c2n,m =


1√
2

√
n(n+ 1)s̄n,1, for m = 0;

1
2

√
(n− 1)(n+ 2)s̄n,2, for m = 1;

1
2

√
(n−m)(n+m+ 1)s̄n,m+1 + 1

2

√
(n−m+ 1)(n+m)s̄n,m−1, for 2 ≤ m ≤ n;

s2n,m =


0, for m = 0;

− 1
2

√
(n− 1)(n+ 2)c̄n,2 − 1√

2

√
n(n+ 1)c̄n,0, for m = 1;

− 1
2

√
(n−m)(n+m+ 1)c̄n,m+1 − 1

2

√
(n−m+ 1)(n+m)c̄n,m−1, for 2 ≤ m ≤ n.

Table 1 Coefficients in representation (9)–(10) of the north-south deflection of the vertical

also be derived after some manipulations from the non-

singular representations of the first Cartesian deriva-

tives of the disturbing potential, see e.g. (Petrovskaya

and Vershkov, 2012, Eq. (15)).

Observe that the singularity of ξ in representation

(9) is contained only in the two multipliers cosλ and

sinλ, that is, (9) has better numerical stability near the

poles than (5). More precisely, our algorithm produces

an approximation ξ̃ to ξ, which obeys the same error

bound at all points belonging to the same ellipsoid as

shown in §3.5. When the evaluation point coincides with

one of the poles (where ξ has a bounded discontinuity)

then ξ̃ approximates the latitude limit of ξ with the

same precision as at the other points, i.e.

ξ̃(r, 0, λ) ≈ lim
θ→0

ξ(r, θ, λ) =
GM√

2arγ(r, 0)

N∑
n=2

(a
r

)n+1

×
√
n(n+ 1)(2n+ 1)[c̄n,1 cosλ+ s̄n,1 sinλ], (11)

ξ̃(r, π, λ) ≈ lim
θ→π

ξ(r, θ, λ) =
−GM√

2arγ(r, π)

N∑
n=2

(
−a
r

)n+1

×
√
n(n+ 1)(2n+ 1)[c̄n,1 cosλ+ s̄n,1 sinλ], (12)

as the values of the limits follow from (9), (10) and the

coefficients with m = 0 in Table 1.

2.5 Stable representations of the east-west deflection

of the vertical

The spherically approximated east-west deflection of

the vertical η = − 1

rγ sin θ

∂T

∂λ
can be represented (see

also Heiskanen and Moritz, 1967, page 235) by

η(r, θ, λ) =
GM

arγ(r, θ)

N∑
n=2

n∑
m=1

(a
r

)n+1

×mP̄nm(cos θ)

sin θ
[c̄n,m sinmλ− s̄n,m cosmλ],

where as above γ = γ(r, θ) is the normal gravity. The

main drawback of this representation is the sin θ term

in the denominator, which generates computational in-

stability around the poles – the singularities of η.

We propose the use of the following identity (derived

from recurrences (13), (14) in Erdelyi et al., 1953, §3.8)

m
P̄nm(x)√

1− x2

=
1

2

√
2n+ 1

2n− 1

(√
(n−m− 1)(n−m)P̄n−1,m+1(x)

+
√

(1 + δ1,m)(n+m− 1)(n+m)P̄n−1,m−1(x)

)
,

1 ≤ m ≤ n, (13)

with x = cos θ. In the geophysics literature representa-

tions (13) are sometimes attributed to (Eshagh, 2008,

Eq. 26). Replacing (13) in the above representation of

η and using (8) we arrive at the representation

η(r, θ, λ) = κ(r, θ) (F1(r, θ, λ) cosλ+ F2(r, θ, λ) sinλ)

(14)

with

κ(r, θ) =
a2

r2γ(r, θ)
.
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c1n,m =


−
√

2(n+ 1)(n+ 2)s̄n+1,1, for m = 0;

−
√

(n+ 2)(n+ 3)s̄n+1,2, for m = 1;

−
√

(n+m+ 1)(n+m+ 2)s̄n+1,m+1 −
√

(n−m+ 1)(n−m+ 2)s̄n+1,m−1, for 2 ≤ m ≤ n;

s1n,m =


0, for m = 0;√

(n+ 2)(n+ 3)c̄n+1,2, for m = 1;√
(n+m+ 1)(n+m+ 2)c̄n+1,m+1 +

√
(n−m+ 1)(n−m+ 2)c̄n+1,m−1, for 2 ≤ m ≤ n;

c2n,m =


√

2(n+ 1)(n+ 2)c̄n+1,1, for m = 0;√
(n+ 2)(n+ 3)c̄n+1,2, for m = 1;√
(n+m+ 1)(n+m+ 2)c̄n+1,m+1 −

√
(n−m+ 1)(n−m+ 2)c̄n+1,m−1, for 2 ≤ m ≤ n;

s2n,m =


0, for m = 0;√

(n+ 2)(n+ 3)s̄n+1,2, for m = 1;√
(n+m+ 1)(n+m+ 2)s̄n+1,m+1 −

√
(n−m+ 1)(n−m+ 2)s̄n+1,m−1, for 2 ≤ m ≤ n.

Table 2 Coefficients in representation (14)–(15) of the east-west deflection of the vertical

Here the functions Fj , j = 1, 2, are harmonic and have

the representation

Fj(r, θ, λ) =
GM
2a2

N−1∑
n=1

(a
r

)n+1
√

2n+ 3

2n+ 1

×
n∑

m=0

(cjnm cosmλ+ sjnm sinmλ)P̄nm(cos θ), (15)

where the coefficients cjn,m, sjn,m, j = 1, 2, are given

in Table 2. Representation (14)–(15) could also be de-

rived from the non-singular representations of the first

Cartesian derivatives of the disturbing potential, see

e.g. (Petrovskaya and Vershkov, 2012, Eq. (15)).

Our code gives an approximation η̃ to η, which obeys

the same error bound over any of the confocal ellipsoids

as shown in §3.5. When the evaluation point coincides

with one of the poles (where η has a bounded disconti-

nuity) then η̃ approximates the latitude limit of η with

the same precision as at the other points, i.e.

η̃(r, 0, λ) ≈ lim
θ→0

η(r, θ, λ) =
GM√

2arγ(r, 0)

N∑
n=2

(a
r

)n+1

×
√
n(n+ 1)(2n+ 1)[c̄n,1 sinλ− s̄n,1 cosλ], (16)

η̃(r, π, λ) ≈ lim
θ→π

η(r, θ, λ) =
GM√

2arγ(r, π)

N∑
n=2

(
−a
r

)n+1

×
√
n(n+ 1)(2n+ 1)[c̄n,1 sinλ− s̄n,1 cosλ], (17)

as the values of the limits follow from (14), (15) and

the coefficients with m = 0 in Table 2.

3 Theoretical underpinning of our evaluation

algorithm

In this section we describe the main components of our

algorithm for fast and accurate evaluation of gravimet-

ric quantities represented in terms of high degree (>

2000) solid spherical or ellipsoidal harmonics at many

arbitrarily scattered points in the space on or above the

physical surface of the Earth.

As was alluded to in Section 2 all gravimetric quan-

tities of interest to us are represented as a product of

the form

G(r, θ, λ) = κ(r, θ)F (r, θ, λ) or

G(r, θ, λ) = κ(r, θ) (F1(r, θ, λ) cosλ+ F2(r, θ, λ) sinλ) ,

(18)

where κ is a slowly varying smooth function whose val-

ues are easy to compute and F is a harmonic function

represented in terms of high degree solid spherical har-

monics as in (2) with given coefficients, that is,

F (r, θ, λ) =

N∑
n=0

n∑
m=0

(a
r

)n+1

× (ānm cosmλ+ b̄nm sinmλ)P̄nm(cos θ). (19)

Thus it boils down to developing an algorithm for fast

and accurate evaluation of harmonic functions F (r, θ, λ)

(or F1(r, θ, λ) cosλ + F2(r, θ, λ) sinλ) as above, multi-

plied by a very smooth function, at arbitrary points

in the space on and above the physical surface of the

Earth. Overall the main difficulty here stems from the

fact that this is a 3-d problem.

As already presented in the introduction, the main

requirement on our algorithm is that the evaluation
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be fast, with guaranteed accuracy and with reasonable

use of computer memory (RAM), so that the algorithm

could ideally be implemented in hand-held devices that

may have limited computational capabilities. The over-

riding objective is that one should be able to use the

software implementation of our algorithm for evaluation

of a given gravimetric quantity at millions of points in

near-real time.

We next present the main idea of our method and

then elaborate on its building blocks. The simple idea

of our algorithm consists of the following steps:

(1) We first convert the spherical harmonic rep-

resentation of F (r, θ, λ) (or F1(r, θ, λ) and F2(r, θ, λ))

to the corresponding ellipsoidal harmonic representa-

tion, which allows to achieve better approximation error

bound (see §3.1). Of course, if the ellipsoidal harmonic

representation of these functions is readily available, the

current step can be skipped.

(2) Second, we use the ellipsoidal harmonic coef-

ficients of F and the easy to compute representation

of κ to pre-compute the values of G on regular grids

Xj on carefully selected family of confocal ellipsoids

E0, E1, . . . , EM with increasing semi-minor axes and E0

being just under the geoid (see §3.2 and §3.3).

(3) We compute the approximate value of G at an

arbitrary point x in the external space by using the pre-

computed values of G at appropriate grid points near

x. To this end we use tensor-product needlets over ap-

propriate ellipsoids and a special kind of “polynomial”

interpolation in the u-direction (see §3.4).

Here it is important that, although G is not (in

general) harmonic, it can be approximated on ellip-

soids with very high precision by bi-variate trigonomet-

ric polynomials due to the fact that κ can be approxi-

mated to very high precision by low degree trigonomet-

ric polynomials.

We next focus on the details.

3.1 From spherical harmonic to ellipsoidal harmonic

expansions

We first convert the representation of the harmonic

function F (r, θ, λ) (or F1, F2) (see (19)) from solid

spherical harmonics to solid ellipsoidal harmonics ex-

pressed in ellipsoidal coordinates (u, ϕ, λ), where ϕ is

the complement of the reduced latitude and u is the

semi-minor axis of the confocal ellipsoid. These coor-

dinates are related to the spherical coordinates (r, θ, λ)

by (see also Heiskanen and Moritz, 1967, section 1-19)
r sin θ cosλ =

√
u2 + E2 sinϕ cosλ,

r sin θ sinλ =
√
u2 + E2 sinϕ sinλ,

r cos θ = u cosϕ.

Applying Jekeli’s transformation (see Jekeli, 1988) we

transform the coefficients ānm, b̄nm, 0 ≤ m ≤ n, 0 ≤
n ≤ N, to ā

{ell}
n,m , b̄

{ell}
n,m , 0 ≤ m ≤ n, 0 ≤ n ≤ N1, so that

F (r, θ, λ) = H(u, ϕ, λ). (20)

The ellipsoidal harmonics expansion of H(u, ϕ, λ) takes

the form

H(u, ϕ, λ) =

N1∑
n=0

n∑
m=0

S̄n,m
(
u
E

)
S̄n,m

(
b
E

)
×
(
ā{ell}nm cosmλ+ b̄{ell}nm sinmλ

)
P̄nm(cosϕ), (21)

where S̄n,m are Jekeli’s functions, b is the semi-minor

axis of the reference ellipsoid and E is its linear eccen-

tricity. In theory N1 =∞ but in practice, for N = 2160,

N1 = N+70 gives (20) with relative error not exceeding

10−20.

For every fixed u the function H(u, ϕ, λ) (or

H1(u, ϕ, λ) cosλ + H2(u, ϕ, λ) sinλ) is a bi-variate

trigonometric polynomial of degree N1 (or N1 + 1) and

tensor product needlets can be utilized for its fast eval-

uation, see §3.4.1. The reason for switching from spheri-

cal harmonic expansions to ellipsoidal harmonic expan-

sions is to guarantee smaller approximation error as

explained in §3.5.

Of course, if the gravitational model used is (orig-

inally) available in terms of ellipsoidal harmonic coef-

ficients, the present conversion from spherical to ellip-

soidal harmonic coefficients is obviously not needed.

3.2 Change of variable in the u-direction

A reasonable requirement is that our evaluation algo-

rithm covers the range (ellipsoidal shell) determined by

U0 ≤ u ≤ U1 with U0 = b− 125 m

and U1 = b+ 544, 000 m.

Here u = b defines the Earth reference ellipsoid and

hence the ellipsoid of semi-minor axis u = b− 125 m is

just bellow the Earth geoid. We set U1 = b+544, 000 m

to cover, with sufficient margin, satellite missions like

GRACE in Low Earth Orbits. The possible change of

the bounds U0, U1 is discussed in §3.6.1.

We now apply a substitution u = µ(s) with the func-

tion µ satisfying the following conditions: µ is defined on

an interval [−s∗, s∗], µ is smooth, µ(0) = U0, µ(s̄) = U1

for some 0 < s̄ < s∗, µ(s) is even, i.e. µ(−s) = µ(s), and

µ(s) is increasing in [0, s∗] and with “small” derivatives

around s = 0. Convenient choices for µ(s) are

µ(s) = U0 +
U1 − U0

1− cos s̄
(1− cos s);

µ(s) = U0 +
U1 − U0

s̄2
s2; µ(s) = U0 +

U1 − U0

s̄4
s4,
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Table 3 Ellipsoid semi-minor axis heights
(in meters) above b for the disturbing po-
tential T and the height anomaly ζ

1 -125.00 11 3,231.83 21 54,013.04 31 283,771.51

2 -124.66 12 4,790.93 22 65,801.13 32 325,598.23

3 -119.63 13 6,839.66 23 79,453.05 33 372,288.83

4 -97.82 14 9,471.84 24 95,170.68 34 424,325.64

5 -39.11 15 12,789.96 25 113,171.59 35 482,245.61

6 84.70 16 16,905.46 26 133,690.70 36 546,649.19

7 309.84 17 21,939.00 27 156,982.22 37 618,211.15

8 680.65 18 28,020.82 28 183,321.92 38 697,693.53

9 1,249.53 19 35,291.24 29 213,009.85 – –

10 2,077.01 20 43,901.22 30 246,373.49 – –

Table 4 Ellipsoid semi-minor axis heights
(in meters) above b for the second radial
derivative of the disturbing potential Trr

1 -125.00 15 2,967.53 29 49,719.26 43 260,514.30

2 -124.92 16 3,951.00 30 57,298.34 44 287,401.31

3 -123.71 17 5,152.54 31 65,724.38 45 316,474.86

4 -118.48 18 6,602.38 32 75,062.28 46 347,883.08

5 -104.40 19 8,332.82 33 85,380.43 47 381,785.04

6 -74.71 20 10,378.22 34 96,750.82 48 418,351.93

7 -20.72 21 12,775.05 35 109,249.38 49 457,768.39

8 68.20 22 15,561.95 36 122,956.21 50 500,233.99

9 204.59 23 18,779.76 37 137,955.95 51 545,964.99

10 402.96 24 22,471.61 38 154,338.09 52 595,196.22

11 679.72 25 26,682.95 39 172,197.43 53 648,183.38

12 1,053.26 26 31,461.65 40 191,634.49 54 705,205.57

13 1,543.90 27 36,858.13 41 212,756.02 55 766,568.24

14 2,173.91 28 42,925.41 42 235,675.61 – –

as the last one is used in the codes hsynth init and

hsynth fast described in §4. Now, instead of G(u, ϕ, λ)

we consider the function

g(s, ϕ, λ) = G(µ(s), ϕ, λ),

0 ≤ ϕ ≤ π, 0 ≤ λ < 2π, 0 ≤ s ≤ s̄.

Thus the evaluation of G is reduced to evaluation of g.

The purpose of the change of variable u = µ(s) is

two fold:

(i) It gives us a function g with essentially smaller

oscillation of the ellipsoidal surface normal derivatives

than the derivatives of G and at the same time the

derivatives of g can be explicitly expressed in terms of

the ellipsoidal surface normal derivatives of G.

(ii) The function g(s, ϕ, λ) being even in s enables us

to only work with values of G on and above the ellipsoid

u = U0, which is critical for our evaluation scheme.

The choice of µ(s) (the third one) in our realization

of the algorithm is determined by the fact that this µ(s)

leads to optimal ellipsoidal surface normal derivatives of

the gravimetric quantities of interest. Hence, the code

will require smaller amount of memory compared to

the other two options for µ(s). For evaluation of other

quantities the selection of µ(s) can be different.

3.3 Construction of regular grids on confocal ellipsoids

and pre-computation

We first introduce a family of confocal ellipsoids

E0, E1, . . . , EM , where our regular grids will reside. We

will use 2J point Lagrange interpolation of g in the

s-direction, where J = 3, 4 or 5, depending on the

smoothness of g. By setting sj = jh, j = 0, 1, . . . ,M ,

where h and M are related by µ(sM−J−1) ≤ U1 ≤
µ(sM−J), we define the confocal ellipsoids Ej with

equations u = µ(sj). The selection of h is explained

in §3.4.2. Then the regular grid Xj on Ej in ellipsoidal

coordinates is defined by

Xj = {(µ(sj), ϕk, λ`)}, j = 0, . . . ,M, with

ϕk =
πk

K
, k = 0, 1, . . . ,K,

λ` =
2π`

L
, ` = 0, 1, . . . , L− 1.

Here L must be even so that the values of the same

grid can be used for continuation through the poles.

The only requirement imposed on K, L and and the

maximal degree N is

min{2K,L} ≥ (2 + τ)N, (22)
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where the parameter τ is from (24) and N is from (23)

in §3.4.1. N represents the degree of the ellipsoidal har-

monic expansion H. In the applications we usually take

L = 2K, see e.g. Section 4 (1).

The pre-computation step consists of computing

G(µ(sj), ϕk, λ`) for k = 0, 1, . . . ,K, ` = 0, 1, . . . , L− 1,

j = 0, . . . ,M . For this we utilize the stable algorithm

for evaluation of quantities represented in spherical har-

monics mentioned in the introduction.

After the above preparation we are ready to describe

Step 2 of our algorithm for fast and accurate evaluation

of gravimetric quantity G at arbitrary points in the

ellipsoidal shell U0 ≤ u ≤ U1.

3.4 Evaluation of gravimetric quantities: The core of

the algorithm

As before, let sj = jh and set uj = µ(sj). Our algo-

rithm will compute an approximation G̃(u, ϕ, λ) to the

gravimetric quantity G(u, ϕ, λ) at an arbitrary point

(u, ϕ, λ) from the ellipsoidal shell U0 ≤ u ≤ U1.

The computation of G̃(u, ϕ, λ) is carried out as fol-

lows:

1. For u ∈ [U0, U1] find s ∈ [sj , sj+1], j ≥ 0, so that

u = µ(s);

2. Use tensor product needlets (see §3.4.1) to compute

g̃(si, ϕ, λ) :=G̃(ui, ϕ, λ),

i = j − J + 1, j − J + 2, . . . , j + J,

using the values of G at the regular points from each

of these 2J ellipsoids;

3. Use Lagrange interpolation to compute G̃(u, ϕ, λ) :=

g̃(s, ϕ, λ) using the values g̃(si, ϕ, λ), i = j − J + 1,

j − J + 2, . . . , j + J , computed above.

Note that the choice of µ(s) as an even function yields

u−1 = u1, u−2 = u2, etc., which allows to only use val-

ues of G̃(uj , ϕ, λ) at points with uj ≥ U0 in the compu-

tation of G̃(u, ϕ, λ)! In this manner we avoid derivatives

of G at points with coordinate u smaller than U0. The

choice U0 = b − 125 m allows to include in the ellip-

soidal shell all points above the geoid. The values of

u0−b, u1−b, . . . that our algorithm uses for computing

the height anomaly ζ and the second radial derivative

of the disturbing potential Trr are given in Tables 3 and

4, respectively.

We next describe in detail the tensor-product trigono-

metric needlets and the Lagrange interpolation we used

above.

3.4.1 Trigonometric needlets

The tensor-product trigonometric needlets are devel-

oped in (Ivanov and Petrushev, 2016) and used for fast

computation of gravimetric quantities represented in

surface spherical harmonics. Here we describe the basic

idea of this method.

The univariate trigonometric needlets are kernels of

the form

KN (x) = 1 + 2
∑

1≤n<(1+τ)N

φ
( n
N

)
cosnx, (23)

where φ is a cutoff function with the following proper-

ties: φ is smooth on [0,∞),

φ(t) = 1, t ∈ [0, 1]; 0 ≤ φ(t) ≤ 1, t ∈ [1, 1 + τ ]

and φ(t) = 0, t ≥ 1 + τ,
(24)

for some τ > 0. The point is that: (a) The kernel KN (x)

reproduces trigonometric polynomials of degree ≤ N ,

that is, if P is a trigonometric polynomial of degree

≤ N , then

P (x) =
1

2π

∫ π

−π
KN (x− y)P (y) dy, (25)

(b) If φ is infinitely smooth (φ ∈ C∞(R)), then

KN (x) has almost exponential localization: For an ar-

bitrary σ > 0 there exists a constant cσ > 0 such that

|KN (x)| ≤ cσN(1 +N |x|)−σ, |x| ≤ π. (26)

Extension of harmonic functions in ellipsoidal coordi-

nates

Taking into account that P̄nm(cosϕ) cosmλ and

P̄nm(cosϕ) sinmλ are trigonometric polynomials in ϕ

and λ for ϕ ∈ [0, π], λ ∈ [0, 2π), leads to a natural

extension of any harmonic function H(u, ϕ, λ) as in

(21). More explicitly, H(u, ϕ, λ) (or H1(u, ϕ, λ) cosλ+

H2(u, ϕ, λ) sinλ) with u fixed extends at once to a bi-

variate trigonometric polynomial f(ϕ, λ) for ϕ, λ ∈ R
with the following properties: The polynomial f(ϕ, λ)

can be expressed in the form

f(ϕ, λ) =

N∑
k=−N

N∑
`=−N

ck`e
i(kϕ+`λ),

where ck` are (complex) coefficients. Furthermore,

f(−ϕ, λ+ π) = f(ϕ, λ) for ϕ, λ ∈ R.

The above assertion is an important ingredient in the

application of tensor product needlets for fast evalua-

tion of harmonic functions.
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The bi-variate trigonometric polynomial f(ϕ, λ) is

evaluated at a point (ϕ, λ) by tensor product trigono-

metric needlets of the form

f̃(ϕ, λ) =
∑

|ϕ−ϕk|≤δ1

∑
|λ−λ`|≤δ2

2

KL
f(ϕk, λ`)

× K1(ϕ− ϕk)K2(λ− λ`), (27)

where K1 and K2 are trigonometric needlet kernels in

ϕ and λ, respectively.

The number of knots {ϕk} on [ϕ−δ1, ϕ+δ1] and the

number of knots {λ`} on [λ− δ2, λ+ δ2] ranges from 26

to 32 (depending on f) for targeted relative accuracy

2× 10−7.

In (27) for λ close to 0 or to 2π we assume that the

definition of λ` from §3.3 is extended by the same for-

mula for ` < 0 or ` ≥ L, which implies the periodic ex-

tension f(ϕ, λ+2π) = f(ϕ, λ) of f . Similarly, for ϕ close

to 0 or to π we extend the definition of ϕk from §3.3 by

the same formula for k < 0 or k > K, which implies the

even semi-periodic extension f(−ϕ, λ+ π) = f(ϕ, λ) in

the case of T, ζ,∆g, δg or Trr, and the odd semi-periodic

extension f(−ϕ, λ + π) = −f(ϕ, λ) in the case of ξ or

η. These extensions do not require evaluation of the

polynomial f at new grid points (ϕk, λ`) whenever L is

even!

We next summarize the main properties of the

trigonometric needlets:

(a) They are highly localized and, therefore, the

needlet algorithm is local. As a result it is a fast com-

putational method.

(b) The superb localization of the needlets make the

method stable and accurate. It also allows to tightly
control the approximation error.

(c) The trigonometric needlets are compatible with

spherical and ellipsoid harmonics, which enables us to

work with sparser grids and as a result in economical

use of memory (RAM).

(d) The compatibility of the trigonometric needlets

with ellipsoid harmonics also allows to improve the ac-

curacy of computation without changing the grid points.

More explicitly, to improve the error of approximation

of f(ϕ, λ) by f̃(ϕ, λ) we only have to enlarge δ1 and δ2
in (27) without changing the grid points. This is a big

advantage over other computational methods, which re-

quire denser grid points.

(e) The trigonometric needlets are easy to imple-

ment in ways that result in fast computational algo-

rithms.

We refer the reader to (Ivanov and Petrushev, 2016)

for a detailed account of trigonometric needlets.

To speed up our algorithm we apply tensor prod-

uct trigonometric needlets for evaluation of quantities

G(u, ϕ, λ) that are not harmonic but are as in (18) the

product of a harmonic functionH(u, ϕ, λ) as in (21) and

a smooth slowly varying function κ(u, ϕ) for fixed u.

The point is that the factor κ(u, ϕ) can be well approx-

imated by a very low degree bi-variate trigonometric

polynomial which implies practically the same accuracy

of needlet computations for G and H whenever N ≥ 50.

3.4.2 Lagrange interpolation

As already explained in the description of our algorithm

above the approximation G̃(u, ϕ, λ) to the gravimet-

ric quantity G(u, ϕ, λ) for u from the ellipsoidal shell

U0 ≤ u ≤ U1 is obtained by interpolating the values

of g(s, ϕ, λ) := G(µ(s), ϕ, λ) on equispaced knots {si},
which means interpolating G on several confocal ellip-

soids.

Let (ϕ, λ) be fixed and let s := µ−1(u) ∈ [sj , sj+1].

If g̃(s, ϕ, λ) is the Lagrange interpolant of g(s, ϕ, λ) at

the points si = ih, i = j − J + 1, j − J + 2, . . . , j + J ,

then the remainder can be expressed as

g(s, ϕ, λ)− g̃(s, ϕ, λ)

=
(s− sj−J+1) · · · (s− sj+J)

(2J)!

∂2Jg

∂s2J
(z, ϕ, λ)

for some z ∈ (sj−J+1, sj+J). Hence

|g(s, ϕ, λ)− g̃(s, ϕ, λ)|

≤ (2J)!

J !222J

(
h

2

)2J

max
s∈[sj−J+1,sj+J ]

∥∥∥∥∂2Jg∂s2J
(s, ·, ·)

∥∥∥∥ , (28)

where the uniform norm on the partial derivative of g

is taken on ϕ ∈ [0, π], λ ∈ [0, 2π).
In our algorithm h is chosen so that:

1. The right-hand side of (28) divided by the uniform

norm of g for fixed s always to be smaller than

5 × 10−7;

2. |si − s̃i| ≤ 10−11 for i = 0, 1, . . . ,M , where s̃i =

µ−1(ui) and ui = µ(si) in the computer arithmetic.

The first condition requires the evaluation of the 2J

partial derivative of g, which by the chain rule are ex-

pressed via the partial derivatives of G and the deriva-

tives of µ. The second condition provides for a small

round-off error in the evaluation of g̃. The reasons for

the choice of µ are explained in §3.2. Moreover, the fact

that µ(s) is even allows us to only operate in the right-

hand side of (28) with values of the partial derivatives

of G at points (u, ϕ, λ) with u ≥ U0. Thus, we avoid

the highly oscillatory behavior of G(u, ϕ, λ) in the re-

gion u < U0.

Note that the above computational scheme repre-

sents for fixed ϕ, λ an approximation of G(u, ϕ, λ) at
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Table 5 The norm
N (G,E, b + h) of the gravi-
metric quantity G on the
ellipsoids with semi-minor
axis b+ h for some heights h.

G \ Height h km 0 100 200 300 400 500

N (T,E, b+ h) m2/s2 1041.54 945.64 873.39 811.31 755.93 706.09

N (ζ,E, b+ h) m 106.49 99.75 95.01 90.97 87.33 84.01

N (∆g,E, b+ h) mGal 989.20 87.39 50.94 35.95 31.40 27.79

N (δg,E, b+ h) mGal 993.45 102.67 68.51 59.96 53.48 48.14

N (ξ,E, b+ h) arcsec. 126.78 21.72 11.63 7.52 5.87 5.41

N (η,E, b+ h) arcsec. 94.77 15.70 9.95 8.45 7.63 7.09

N (Trr,E, b+ h) Eötvös 1296.45 10.49 2.39 1.29 0.81 0.55

Table 6 Evaluation accuracy
as an absolute error bound.

G \ h km 0 20 100 200 500

T m2/s2 1.0× 10−3 1.0× 10−3 9.5× 10−4 8.7× 10−4 7.1× 10−4

ζ m 1.1× 10−4 1.0× 10−4 1.0× 10−4 9.5× 10−5 8.4× 10−5

∆g mGal 9.9× 10−4 3.4× 10−4 8.7× 10−5 5.1× 10−5 2.8× 10−5

δg mGal 9.9× 10−4 3.5× 10−4 1.0× 10−4 6.9× 10−5 4.8× 10−5

ξ arcsec. 1.3× 10−4 5.2× 10−5 2.2× 10−5 1.2× 10−5 5.4× 10−6

η arcsec. 8.6× 10−5 4.1× 10−5 1.4× 10−5 9.6× 10−6 7.1× 10−6

Trr Eötvös 1.3× 10−3 1.3× 10−4 1.0× 10−5 2.4× 10−6 5.5× 10−7

the non-equally spaced points uj by a 2J − 1 degree

interpolation spline of maximal defect in the variable

µ−1(u).

3.5 Accuracy

For a gravimetric quantity G, G being T , ζ, ∆g, δg, ξ,

η or Trr, denote by

N (G,E, u) = max
{(ϕ,λ)}

|G(u, ϕ, λ)|

its norm on an ellipsoid with semi-minor axis u confocal

to the reference ellipsoid. Here (u, ϕ, λ) stand for the

ellipsoidal coordinates of a point and the maximum is

taken over all 0 ≤ ϕ ≤ π, 0 ≤ λ ≤ 2π.

For a point P with spherical coordinates

(rP , θP , λP ) and ellipsoidal ones (uP , ϕP , λP ),

U0 ≤ uP ≤ U1, we require that our algorithm

computes an approximation G̃(uP , ϕP , λP ) to the

gravimetric quantity G(uP , ϕP , λP ) with relative error

≤ 10−6, i.e.

max
{(ϕP ,λP )}
U0≤uP≤U1

|G̃(uP , ϕP , λP )−G(uP , ϕP , λP )|
N (G,E, uP )

≤ 10−6.

(29)

Note that (29) holds even when G is ξ or η, which are

bounded discontinuous functions at the poles.

The relative precision 10−6 in (29) is selected to be

better than the relative accuracy of the model EGM2008

itself. When the relative accuracy of the gravimetric

model is improved then our codes can be easily modi-

fied to work with higher accuracy.

Table 5 illustrates the dependance of the norms

N (G,E, u) on the ellipsoid semi-minor axis. Notice the

modest decrease of the norms of T and ζ, the faster

decrease of the norms of ∆g, δg, Tr, ξ and η, and the

very fast decrease of the norms of Trr. The decrease of

N (G,E, uP ) means smaller absolute errors in (29) when

uP increases.

3.5.1 Absolute error

In some instances it is useful to know how the bound

10−6 on the relative error translates into absolute error

for various gravimetric quantities at various heights h

above the surface of the earth (geoid). The accuracy in

absolute units for each of the gravimetric quantities T ,

ζ, ∆g, δg, ξ, η, and Trr is given in Table 6.

3.5.2 Norms on ellipsoids versus norms on spheres

One may avoid the use of ellipsoidal coordinates as de-

scribed in §3.1 and work only in spherical coordinates.

Then the target error estimate would be

max
{(θP ,λP )}
U0≤uP≤U1

|G̃(rP , θP , λP )−G(rP , θP , λP )|
N (G,S, rP )

≤ 10−6,

(30)

where (rP , θP , λP ) and (uP , ϕP , λP ) denote the spheri-

cal and the ellipsoidal coordinates of a point P , respec-

tively, and

N (G,S, r) = max
{(θ,λ)}

|G(r, θ, λ)|

denotes the norm of G on the sphere of radius r. Here

the maximum is taken over all 0 ≤ θ ≤ π, 0 ≤ λ ≤ 2π.
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Table 7 The ratio of the norms
N (G, S, rP )/N (G,E, b) for points P on the
reference ellipsoid with ellipsoidal coordinates
(b, ϕP , λP ) and spherical coordinates (rP , θP , λP ).
The entries for T and δg are not reported because
they are very close to the entries for ζ and ∆g,
respectively.

G \ ϕP π/2 5π/12 π/3 π/4 π/6 π/12 0

ζ 1.00 1.00 1.00 1.01 1.43 3.03 4.45

∆g 0.93 1.07 1.75 5.70 26.32 83.74 129.19

ξ 0.77 0.90 1.61 6.24 29.25 94.73 146.31

η 0.86 1.00 2.22 9.19 40.64 130.28 202.19

Trr 0.68 0.94 2.59 12.07 58.86 191.90 296.94

Table 8 The ratio of the norms
N (G, S, rP )/N (G,E, b + 20, 000) for points P
20 km above the reference ellipsoid with el-
lipsoidal coordinates (b + 20, 000, ϕP , λP ) and
spherical coordinates (rP , θP , λP ). The entries for
T and δg are not reported because they are very
close to the entries for ζ and ∆g, respectively.

G \ ϕP π/2 5π/12 π/3 π/4 π/6 π/12 0

ζ 1.00 1.00 1.00 1.01 1.01 1.02 1.02

∆g 0.93 0.97 1.14 1.47 1.99 2.70 3.10

ξ 0.92 0.94 1.01 1.13 1.33 1.85 2.18

η 0.97 1.00 1.12 1.33 1.61 1.96 2.29

Trr 0.96 1.04 1.34 2.03 3.64 6.81 9.35

Fig. 1 Point P above the Earth reference ellipsoid (black)
congruent to a confocal ellipsoid (blue) and to a sphere (red).
Parts of the sphere (dotted red) may be into the reference
ellipsoid.

The main problem in obtaining error estimate as

in (30) is the very high oscillation of G in the domain

under the surface of the earth (see dotted red curves

in Figure 1), i.e. whenever b ≤ rP ≤ a, b ≤ uP . This

would lead to the use of larger size of memory (RAM)

because more concentric spheres will be needed to get

(30) compared with the number of confocal ellipsoids

necessary for (29).

Another advantage of the ellipsoidal coordinates

over the spherical coordinates here is the fact

that N (G,S, rP ) could be essentially larger than

N (G,E, uP ) when the point P is away from the equator

as Table 7 shows. This means that estimate (30) could

be a lot less precise than estimate (29). Of course, if

the point P is on the equator, then the inequality is re-

versed but the two norms N (G,E, uP ) and N (G,S, rP )

remain close to each other in this case. Table 7 also

shows that the disadvantage of (30) over (29) on the

reference ellipsoid is a lot stronger for ∆g, δg, ξ, η and

Trr than for ζ and T .

The two estimates (29) and (30) become closer with

the increase of the point height above the reference el-

lipsoid. As Table 8 shows the discrepancies at height 20

km for ∆g, δg, ξ, η and Trr still exist but they have

smaller magnitude, while the discrepancies for ζ and T

are practically negligible.

3.6 Discussion

Our algorithm can be applied for scattered point evalu-

ation of an arbitrary quantity G represented as in (18).

The factor κ in (18) may also depend on λ, but should

be well approximated by low degree bi-variate trigono-

metric polynomials on every ellipsoid under consider-

ation as explained in §3.4.1. This would allow a good

approximation of G from solid spherical harmonics of

slightly larger degree than the degree of F . At the same

time the product κF should satisfy the requirements of

§3.4.2 for an appropriate µ and large enough h. Note

that the main approximation parameter h heavily de-

pends on the choice of µ and on the coefficients of F

and is specific to every gravimetric quantity to be eval-

uated.

3.6.1 Range of distances above the reference ellipsoid

If one wants to cover areas lying below the ellipsoid of

semi-minor axis u = b−125 m (e.g. the Dead Sea), then

U0 should be decreased to, say, U0 = b − 550 m. This

choice of U0 would increase the number of ellipsoids

from §3.3 for the range [U0, U1] by at most 1 and at

the same time preserve the relative error estimate (29).

This would result in slightly larger absolute error for

the points below the geoid because of the increase of
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N (G,E, uP ) (see §3.5). Essentially larger decrease of

U0 is not desirable as the discussion in §3.5.2 indicates.

As was alluded to in §3.2 the selection U1 = b +

544, 000 m was made in order to cover satellites in Low

Earth Orbits. The simplest way to evaluate gravimetric

quantities at points above b+ 544, 000 m is to increase

U1. For example, the choice U1 = b+1, 000, 000 m would

increase the number of ellipsoids from §3.3 by 6 for T

and ζ and by 8 for the remaining gravimetric quanti-

ties, i.e. by approximately 15% (with the same increase

of memory), at the same time preserving the compu-

tational speed and the relative error estimate (29). At

high altitudes (u > b + 1, 000, 000 m) the gravimetric

quantities of interest can be approximated with rela-

tive error 10−6 by low degree solid spherical harmonics

which allow for good computational speed.

It is important to know that for all gravimetric quan-

tity we deal with in this article the step h we use for the

range [b− 125, b+ 544, 000] will ensure the required ac-

curacy of approximation also for the range [b− 550, b+

1, 000, 000].

Another possible scenario is when one wishes to

cover points on or near the Earth topography only.

That means to choose e.g. U1 = b + 10, 000 m. As-

sume that one wants to compute values of the second

radial derivative of the disturbing potential Trr. Then

Tabel 4 shows that the current version of our algorithm

will use 24 ellipsoids to compute the values of Trr at

arbitrary scattered points from this region. The speed

and accuracy will be the same as before. This version of

our algorithm would be more economical in the size of

memory (RAM) used than the current version. Roughly

it will use twice less RAM. However, if one is interested

in covering points on the Earth topography or on any

other surface, then the problem could be considered as

a combination of a few 2 dimensional ones and our al-

gorithm can be modified so that the use of RAM would

be reduced substantially with the speed and accuracy

remaining the same or better.

3.6.2 Regular grids on ellipsoids

From algorithmic point of view the computation of the

values of a gravimetric quantity G at the points of the

regular grid Xj (j = 0, 1, . . . ,M) residing on the con-

focal ellipsoid Ej (see §3.3) can be performed directly

in solid spherical harmonics without passing to ellip-

soidal ones as in §3.1. But from analytic point of view

error estimates as (29) can be guaranteed for needlet

approximation only if the restriction of G on Ej is

approximated within a margin of 10−8 by bi-variate

trigonometric polynomials of degree close to the degree

of the original series. As shown in §3.1 Jekeli’s trans-

formation provides such an approximation error (not

exceeding 10−20) by increasing the degree from 2190

to 2260. If the ellipsoid eccentricity was larger than the

Earth’s one or if another type of surface of revolution is

used then one may need higher trigonometrical degree

for good approximation which will result in a denser

grid. For more detailed account of the approximation

error when using trigonometric needlets, see (Ivanov

and Petrushev, 2016).

3.6.3 Needlets versus spline interpolation

Clearly, the role of the trigonometric needlets in the

algorithm described in §3.4 can be played by spline in-

terpolation based on local high degree polynomial La-

grange interpolation. A detailed comparison of these

two schemes is given in (Ivanov and Petrushev, 2016,

§3.5). The overall conclusion is that if using spline inter-

polation, in order to guarantee the accuracy and speed

we require here, one will be forced to use at least 3.3

times more memory (RAM) for regular grid data than

the needlet based software, that means at least 33 GB

rather than 10 GB RAM. Therefore, the needlets have

a significant advantage over spline interpolation. One

should expect additional slowdown of the computation

when using high degree spline interpolation due to sta-

bility problems.

Our evaluation algorithm combines two approxima-

tion methods: needlet approximation on surfaces (e.g.

ellipsoids) and fixed degree spline interpolation in the

normal direction to these surfaces. The spline degrees

are 5, 7 or 9 depending on the smoothness of the gravi-

metric quantity near the boundary – the ellipsoid with

u = U0. Here “smoothness” means that the ratio of the

norm of the 6-th, 8-th or 10-th derivative and the norm

of the gravimetric quantity is essentially smaller than

the same ratio for an arbitrary polynomial of degree

2190. Such low degree spline interpolation require prior

knowledge of the approximated quantity but gives us

the best speed under the reasonable memory usage of

under 10 GB for regular grid data.

In case one wants to achieve better accuracy, say

10−8, then the strategies for the two approximation

methods are different. For the needlet approximation

one employs the same regular grid (or any other grid

satisfying (22)) but uses more nodes. This leads to the

same size of memory (per ellipsoid) and slower evalu-

ation speed. In the case of fixed degree spline approx-

imation one is forced to decrease the step h in order

to guarantee the required accuracy using estimate (28).

This implies the same evaluation speed but larger size

of memory due to the usage of more ellipsoids.
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3.6.4 Ultra-high degree harmonic expansions

In resent years spherical harmonics of degree 10,800 or

higher have been used in geopotential modeling. Next

we briefly discuss the estimated requirements for using

our algorithm for evaluation of such ultra-high degree

harmonic expansions.

If the coefficients of the extended model of degrees

from 1,000 to 10,800 behave similarly as the coefficients

of EGM2008 of degrees from 200 to 2,160, then the

gravimetric quantities under consideration will have the

same “spatial” smoothness and the number of ellipsoids

will be the same. For 5 times higher model degree there

will be 25 times more regular points on every ellipsoid,

which means 233 GB memory – currently not possi-

ble on desktops. At the same time the accuracy and

the speed of our method would be the same! There will

be underflow in the grid evaluation and the Fukushima

(2012) method (or other extended precision arithmetic)

has to be used in the initialization code. Sorting scat-

tered points by regions could help to reduce the memory

requirements.

On the other hand the “standard” software will work

some 25 times slower without counting the underflow

that inevitably will occur. The Fukushima (2012) method

will additionally slow down the computations. The model

coefficient set will also increase 25 times but this is not

so critical.

It should be pointed out that our tensor-product

trigonometric needlet method would not experience mem-

ory problems when applied for evaluation of harmonic

expansions of degree up to 15,000 at scattered points

on any sphere or ellipsoid. We have successfully tested

it on functions represented in spherical/ellipsoidal har-
monics of degree 12,960.

3.6.5 Evaluation of very “rough” functions

If our computational method is applied to a very “rough”

function, then the targeted relative accuracy will be

achieved if the number of confocal ellipsoids is increased

depending on the norms of the derivatives of that quan-

tity.

However, the grid spacing on the ellipsoids could

remain the same; it will provide the same accuracy

and speed as before. Thus, the relative accuracy 2 ×
10−7 of the tensor-product trigonometric needlets is al-

ways guaranteed (independent of the “roughness” of the

trigonometric polynomial) by using 26 knots for τ = 1.6

or 32 knots for τ = 1.0. Note that τ = 1.6 means denser

grid than τ = 1.0 and we can achieve the desired accu-

racy with less knots here. The independence of the grid

from the “roughness” of the function being evaluated

is an important advantage of needlet tensor product

method over other ones.

4 Description of software

Software realization in FORTRAN of the algorithms

for fast and precise evaluation of quantities represented

in terms of solid spherical or ellipsoidal harmonics has

been developed. The covered gravimetric quantities are:

disturbing potential T (in m2/s2), height anomaly ζ (in

meters), gravity anomaly ∆g (in mGal), gravity distur-

bance δg (in mGal), north-south deflection of the verti-

cal ξ (in arcseconds), east-west deflection of the vertical

η (in arcseconds), and the second radial derivative of the

disturbing potential Trr (in Eötvös). In the present im-

plementation, the values of these quantities are derived

from the Earth Gravitational Model EGM2008 (Pavlis

et al., 2012).

We next provide some basic information about our

software.

(1) The program hsynth init precomputes the val-

ues of the gravimetric quantity of interest at regular

grid points located on confocal ellipsoids as described

in §3.3. The “standard” method for evaluation of sur-

face spherical harmonic gridded values is applied. The

coefficients of the ellipsoidal harmonic expansions are

obtained via Jekeli’s transformation from the coeffi-

cients of the spherical harmonic expansions (see Sub-

section 3.1), which in turn are derived as explained

in Section 2 from the EGM2008 coefficients given in

file EGM2008_to2190_TideFree. The number of confo-

cal ellipsoids is chosen to cover the range [U0, U1] with

step h, which in turn depends on the evaluated gravi-

metric quantity as explained in Subsection 3.4.2.

The number of regular grid points located on an

ellipsoid is: 4015×8028 for T and ζ (2.69′×2.69′ grid);

3346×6690 for ∆g, δg, ξ, η and Trr (3.23′×3.23′ grid).

The grids are further extended as explained in §3.4.1.

The number of confocal ellipsoids used by the code is

38 for T and ζ, 53 for ∆g and δg, 54 for ξ, 55 for η and

Trr. The values of the parameter h generating these

ellipsoids are 0.021435478 for T and ζ, 0.015295193 for

∆g, 0.015323755 for δg, 0.01510703 for ξ, 0.014712992

for η, 0.01500051 for Trr.

The precomputed values are not included in the

package because of their 9.3 GB sizes. On the computer

where the tests were performed it takes approximately

54 minutes to run the code for T or ζ, 1 hour for ∆g, δg

or Trr and 2 hours for ξ or η. The program hsynth init

is run once for every gravimetric quantity.

(2) The program hsynth fast is an implementation

of the algorithm described in §3.4 to compute the val-
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ues of any of the above gravimetric quantities at arbi-

trarily scattered points in the external space. As input

hsynth fast uses the output of hsynth init, which

does not depend of the sets of points on which the code

hsynth fast is run. The output of hsynth init is used

to initialized the program hsynth fast in the same way

as the gravitational model coefficients are used to ini-

tialized the “standard” synthesis algorithms, e.g. the

code hsynth standard described below.

(3) The code hsynth standard was developed for

testing the accuracy of the main code hsynth fast and

is used as a benchmark for its speed. Here, the gravi-

metric quantities are evaluated using the same method

implemented in the harmonic synth program (Holmes

and Pavlis, 2008) for the case of randomly scattered

evaluation points, except for the north-south and east-

west vertical deflections ξ and η. These are computed

here using the more stable numerical methods presented

in §2.4 and §2.5 respectively. Unlike hsynth init and

hsynth fast, which use ellipsoidal harmonic coeffi-

cients, hsynth standard uses spherical harmonic co-

efficients to evaluate the gravimetric quantities. In the

present implementation, the EGM2008 coefficients were

used.

When executed the three codes report some

statistics for their work. Among the displayed

hsynth standard statistics one can find the rela-

tive errors of the gravimetric quantity computed by

hsynth fast. The speed of our realization of the two

methods can be compared using the reported numbers

“Values per second”. In both programs these numbers

represent pure computational time, ignoring the time

necessary to read the input or to write the output.

As the speed of the “standard” method

(hsynth standard) is approximately 46 values

per second for T , ζ, ∆g, δg and Trr or 23 values per

second for ξ and η it is not advisable to run this code

with more than 10, 000 points.

5 Software download

The software described above is now open source and is

available at the website of the Interdisciplinary Mathe-

matics Institute (IMI), University of South Carolina:

http://imi.cas.sc.edu/. To download the source

codes in MATLAB and in FORTRAN with its precom-

piled executables visit

http://imi.cas.sc.edu/gravimetric-quantities/.

A User manual with a detailed description of the soft-

ware, instructions for its use and test statistics is also

available at the IMI website.

6 Comparison with existing methods. Results

The FORTRAN software has been extensively tested

on a laptop with 2.4 GHz PC, CPU Intel Core i7 with

16 GB of RAM and 250 GB SSD used to store the input

and output files. The hsynth fast uses 11 GB of RAM.

The program hsynth fast has been tested on up

to 30, 000, 000 randomly distributed within the whole

shell [U0, U1] points, which were processed with the

speed indicated in the third column of Table 9. The

relative error did not exceed 4.64 × 10−7 for all tests

measured with hsynth standard. Recall that the rela-

tive error is computed by (29) and some values of the

norms N (G,E, u) are given in Table 5.

The improvement in computational speed of our

code (measured by Values per second) to the soft-

ware using the “standard” method is given in the last

column of Table 9. The entries in the second and third

column multiplied by the number of evaluation points

give the “pure synthesis times”. They do not include the

times for loading the point coordinates and for writing

the computed values, which are also proportional to the

number of evaluation points. They also do not include

the times for initializing the codes – approximately 30 s

for loading the grid values by hsynth fast or 11 s for

loading the model coefficients by hsynth standard. For

more details see the User manual from §5.

Gravimetric hsynth hsynth improvement
quantity standard fast (times)

T 46.50 40884.58 879.24
ζ 46.37 40677.58 877.24
∆g 46.11 24716.76 536.04
Tr 46.21 24510.06 530.41
ξ 23.32 24831.27 1064.81
η 46.33 24690.56 532.93
Trr 46.29 19918.77 430.30

Table 9 Values per second by hsynth standard and hsynth

fast and the improvement in computational speed

The different entries in the third column of Ta-

ble 9 reflects the different approximation methods used

in hsynth fast to compute the respective gravimet-

ric quantities. The speed for ξ in the second column

of Table 9 is twice smaller than for the other quanti-

ties because two harmonic expansions (instead of one)

are used for its evaluation in hsynth standard. The re-

ported speed for η in the second column of Table 9 is

for the “standard” method, which is not stable near the

poles. If our stable method is used, then the speed for

η is similar to the speed for ξ.
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7 Conclusion

The experiments with the software described above

clearly demonstrate the capability of our needlet

method for fast and stable evaluation of gravimetric

quantities represented in terms of solid spherical har-

monics at scattered points in space. The current version

of our software (hsynth fast) runs between 430 and

1064 times faster than the software (hsynth standard)

that employs ”standard” harmonic synthesis methods.

This speed allows to use our code for near real-time

calculations on standard computers. It also is capable

of evaluation of gravimetric quantities at large number

(millions) of points.

Future work. Our method for fast and accurate

evaluation of quantities represented in solid spheri-

cal harmonics is not limited to gravimetric quanti-

ties only. It can be successfully used for evaluation

of any quantity that is represented in high degree

solid spherical or ellipsoidal harmonics. In particular,

it can be utilized for evaluation of the elements of the

geomagnetic field in the current Enhanced Magnetic

Model (EMM2015), which are represented in terms

of spherical harmonics of degree 720, see https://

www.ngdc.noaa.gov/geomag/EMM/index.html.

In many areas ranging from Geodesy and Geomag-

netism to Cosmology and Atmospheric sciences data are

collected at accelerating rates with higher and higher

resolution and accuracy every year. The assimilation of

these data will lead to the development of mathemati-

cal models with high accuracy and predictability. The

needlet method described in this article has a lot of

potential. Since our method is local it is parallelizable

and can be utilized for fast and accurate evaluation of

quantities represented in spherical/ellipsoidal harmon-

ics of degree 10,000 or higher. The results reported here

indicate that the needlets can be a handy tool in future

more accurate models.
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