IMI Interdisciplinary Mathematics InstituteCollege of Arts and Sciences

Projected Stein Variational Newton:A Fast and Scalable Bayesian Inference Method in High Dimensions

  • Dec. 4, 2019
  • 3:30 p.m.
  • LeConte 317R

Abstract

In this talk, we present a projected Stein variational Newton (pSVN) method for high-dimensional Bayesian inference. To address the curse of dimensionality, we exploit the intrinsic low-dimensional geometric structure of the posterior distribution in the high-dimensional parameter space via its Hessian (of the log posterior) operator and perform a parallel update of the parameter samples projected into a low-dimensional subspace by an SVN method.The subspace is adaptively constructed using the eigenvectors of the averaged Hessian at the current samples. We demonstrate fast convergence of the proposed method, complexity independent of the parameter and sample dimensions, and parallel scalability.

© Interdisciplinary Mathematics Institute | The University of South Carolina Board of Trustees | Webmaster
USC